Objective: We aimed to investigate HBx genetic elements correlated with hepatitis B virus (HBV) -related hepatocellular carcinoma (HCC) and their impact on (a) HBV replicative efficiency, (b) HBx binding to circular covalently closed DNA (cccDNA), (c) apoptosis and cell-cycle progression, and (d) HBx structural stability. Methods: This study included 123 individuals chronically infected with HBV: 27 with HCC (77.9% (21/27) genotype D; 22.1% (6/27) genotype A) and 96 without HCC (75% (72/96) genotype D; 25.0% (24/96) genotype A). HepG2 cells were transfected by wild-type or mutated linear HBV genome to assess pregenomic RNA (pgRNA) and core-associated HBV-DNA levels, HBx-binding onto cccDNA by chromatin immunoprecipitation-based quantitative assay, and rate of apoptosis and cell-cycle progression by cytofluorimetry. Results: F30V was the only HBx mutation correlated with HCC (18.5% (5/27) in HCC patients versus 1.0% (1/96) in non-HCC patients, p 0.002); a result confirmed by multivariate analysis. In vitro, F30V determined a 40% and 60% reduction in pgRNA and core-associated HBV-DNA compared with wild-type (p <0.05), in parallel with a significant decrease of HBx binding to cccDNA and decreased HBx stability. F30V also decreased the percentage of apoptotic cells compared with wild-type (14.8 ± 6.8% versus 19.1 ± 10.1%, p <0.01, without affecting cell-cycle progression) and increased the probability of HBx-Ser-31 being phosphorylated by PI3K-Akt kinase (known to promote anti-apoptotic activity). Conclusions: F30V was closely correlated with HBV-induced HCC in vivo, reduced HBV replicative efficiency by affecting HBx-binding to cccDNA and increased anti-apoptotic HBx activity in vitro. This suggests that F30V (although hampering HBV's replicative capacity) may promote hepatocyte survival, so potentially allowing persistent production of viral progeny and initiating HBV-driven
Background: Strongyloidiasis is a neglected tropical disease caused by the intestinal nematode Strongyloides stercoralis and characterized by gastrointestinal and pulmonary involvement. We report a pediatric case of strongyloidiasis to underline the response of the host microbiota to the perturbation induced by the nematode. Methods: We performed a 16S rRNA-metagenomic analysis of the gut microbiota of a 7-year-old female during and after S. stercolaris infection, investigating three time-point of stool samples’ ecology: T0- during parasite infection, T1- a month after parasite infection, and T2- two months after parasite infection. Targeted-metagenomics were used to investigate ecology and to predict the functional pathways of the gut microbiota. Results: an increase in the alpha-diversity indices in T0-T1 samples was observed compared to T2 and healthy controls (CTRLs). Beta-diversity analysis showed a shift in the relative abundance of specific gut bacterial species from T0 to T2 samples. Moreover, the functional prediction of the targeted-metagenomics profiles suggested an enrichment of microbial glycan and carbohydrate metabolisms in the T0 sample compared with CTRLs. Conclusions: The herein report reinforces the literature suggestion of a putative direct or immune-mediated ability of S. stercolaris to promote the increase in bacterial diversity.
Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are key regulators of differentiation and development. In the cell, transcription factors regulate the production of miRNA in response to different external stimuli. Copper (Cu) is a heavy metal and an essential micronutrient with widespread industrial applications. It is involved in a number of vital biological processes encompassing respiration, blood cell line maturation, and immune responses. In recent years, the link between deregulation of miRNAs’ functionality and the development of various pathologies as well as cardiovascular diseases (CVDs) has been extensively studied. Alzheimer’s disease (AD) is the most common cause of dementia in the elderly with a complex disease etiology, and its link with Cu abnormalities is being increasingly studied. A direct interaction between COMMD1, a regulator of the Cu pathway, and hypoxia-inducible factor (HIF) HIF-1a does exist in ischemic injury, but little information has been collected on the role of Cu in hypoxia associated with AD thus far. The current review deals with this matter in an attempt to structurally discuss the link between miRNA expression and Cu dysregulation in AD and CVDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.