Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentrationdependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.apoplastic pH | auxin | cellular expansion | root growth | root gravitropism
Temperature modulates growth and development throughout the entire lifecycle of a plant. High temperature (HT) triggers the auxin biosynthesis-dependent growth in aerial tissues. On the other hand, the contribution of auxin to HT-induced root growth is currently under debate. Here we show that the putative intracellular auxin carrier PIN-LIKES 6 (PILS6) is a negative regulator of organ growth and that its abundance is highly sensitive to HT. PILS6 localizes to the endoplasmic reticulum and limits the nuclear availability of auxin, consequently reducing the auxin signaling output. HT represses the PILS6 protein abundance, which impacts on PILS6-dependent auxin signaling in roots and root expansion. Accordingly, we hypothesize that PILS6 is part of an alternative mechanism linking HT to auxin responses in roots.
In plants, aerial organs originate continuously from stem cells in the center of the shoot apical meristem. Descendants of stem cells in the subepidermal layer are progenitors of germ cells, giving rise to male and female gametes. In these cells, mutations, including insertions of transposable elements or viruses, must be avoided to preserve genome integrity across generations. To investigate the molecular characteristics of stem cells in Arabidopsis, we isolated their nuclei and analyzed stage-specific gene expression and DNA methylation in plants of different ages. Stem cell expression signatures are largely defined by developmental stage but include a core set of stem cell-specific genes, among which are genes implicated in epigenetic silencing. Transiently increased expression of transposable elements in meristems prior to flower induction correlates with increasing CHG methylation during development and decreased CHH methylation, before stem cells enter the reproductive lineage. These results suggest that epigenetic reprogramming may occur at an early stage in this lineage and could contribute to genome protection in stem cells during germline development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.