Background: L-carnitine can be metabolized to trimethylamine N-oxide (TMAO), a molecule that promotes atherogenesis through its interaction with macrophages and lipid metabolism. Objective: The aim of the present study was to assess whether L-carnitine supplementation may promote changes in selected serum biomarkers of atherosclerosis. Methods: Before the start, in the mid-point and after completing the 24-weeks supplementation protocol, fasting blood samples were taken from the antecubital vein. Plasma free L-carnitine and TMAO were determined by the UPLC/MS/MS method. Serum proteins were determined by the enzyme immunoassay method using commercially available kits. Total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, and triglycerides have been determined using standard automatic analyzer. Results: L-carnitine supplementation elevated fasting plasma carnitine in the mid-point of our study and it remained increased until the end of supplementation period. Moreover, it induced tenfold increase in plasma TMAO concentration but did not affect serum C-reactive protein, interleukin-6, tumour necrosis factor-α, L-selectin, P-selectin, vascular cell adhesion molecule-1, intercellular adhesion molecule-1 or lipid profile markers. Conclusion: We demonstrated that although oral L-carnitine supplementation significantly increased plasma TMAO concentration, no lipid profile changes or other markers of adverse cardiovascular events were detected in healthy aged women over the period of 24 weeks.
Background L-carnitine (LC) is used as a supplement by recreationally-active, competitive and highly trained athletes. This systematic review aims to evaluate the effect of prolonged LC supplementation on metabolism and metabolic modifications. Methods A literature search was conducted in the MEDLINE (via PubMed) and Web of Science databases from the inception up February 2020. Eligibility criteria included studies on healthy human subjects, treated for at least 12 weeks with LC administered orally, with no drugs or any other multi-ingredient supplements co-ingestion. Results The initial search retrieved 1024 articles, and a total of 11 studies were finally included after applying inclusion and exclusion criteria. All the selected studies were conducted with healthy human subjects, with supplemented dose ranging from 1 g to 4 g per day for either 12 or 24 weeks. LC supplementation, in combination with carbohydrates (CHO) effectively elevated total carnitine content in skeletal muscle. Twenty-four-weeks of LC supplementation did not affect muscle strength in healthy aged women, but significantly increased muscle mass, improved physical effort tolerance and cognitive function in centenarians. LC supplementation was also noted to induce an increase of fasting plasma trimethylamine-N-oxide (TMAO) levels, which was not associated with modification of determined inflammatory nor oxidative stress markers. Conclusion Prolonged LC supplementation in specific conditions may affect physical performance. On the other hand, LC supplementation elevates fasting plasma TMAO, compound supposed to be pro-atherogenic. Therefore, additional studies focusing on long-term supplementation and its longitudinal effect on the cardiovascular system are needed.
l-carnitine supplementation has been used for cardiovascular health protection for a long time. Recently, trimethylamine-N-oxide (TMAO), which is an end product of l-carnitine metabolism via the activity of microbiota, has been identified as a cardiovascular disease (CVD) biomarker. The aim of this study was to assess the effect of 6 months of l-carnitine supplementation in a group of aged women engaged in a regular physical training. Platelet mitochondrial DNA methylation, an emerging and innovative biomarker, lipid profile and TMAO levels have been measured. TMAO increased after l-carnitine supplementation (before 344.3 ± 129.8 ng/mL vs. after 2216.8 ± 1869.0 ng/mL; n = 9; paired t-test, p = 0.02). No significant effects on TMAO were exerted by training alone (n = 9) or by l-leucine supplementation (n = 12). TMAO levels after 6 months of l-carnitine supplementation were associated with higher low-density lipoprotein-cholesterol (LDL-c) (Spearman Rho = 0.518, p = 0.003) and total cholesterol (TC) (Spearman Rho = 0.407, p = 0.026) levels. l-carnitine supplementation increased D-loop methylation in platelets (+6.63%; paired t-test, p = 0.005). D-loop methylation was not directly correlated to the TMAO augmentation observed in the supplemented group, but its increase inversely correlated with TC (Pearson coefficient = −0.529, p = 0.029) and LDL-c (Pearson coefficient = −0.439, p = 0.048). This evidence supports the hypothesis that the correlation between l-carnitine, TMAO and atherosclerosis might be more complex than already postulated, and the alteration of mitochondrial DNA (mtDNA) methylation in platelets could be involved in the pathogenesis of this multifactorial disease.
Skeletal muscle wasting, associated with aging, may be regulated by the inflammatory cytokines as well as by insulin-like growth factor 1 (IGF-1). l-carnitine possesses anti-inflammatory properties and increases plasma IGF-1 concentration, leading to the regulation of the genes responsible for protein catabolism and anabolism. The purpose of the present study was to evaluate the effect of a 24-week l-carnitine supplementation on serum inflammatory markers, IGF-1, body composition and skeletal muscle strength in healthy human subjects over 65 years of age. Women between 65 and 70 years of age were supplemented for 24 weeks with either 1500 mg l-carnitine-l-tartrate or an isonitrogenous placebo per day in a double-blind fashion. Before and after the supplementation protocol, body mass and composition, as well as knee extensor and flexor muscle strength were determined. In the blood samples, free carnitine, interleukin-6, tumor necrosis factor-α, C-reactive protein and IGF-1 were determined. A marked increase in free plasma carnitine concentration was observed due to l-carnitine supplementation. No substantial changes in other parameters were noted. In the current study, supplementation for 24 weeks affected neither the skeletal muscle strength nor circulating markers in healthy women over 65 years of age. Positive and negative aspects of l-carnitine supplementation need to be clarified.
The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.