The oil obtained from the seeds of Nigella sativa L. (N. sativa), also known as black cumin, is frequently used in the Mediterranean area for its anti-inflammatory, anti-oxidant, and anti-cancer activities. The aim of the present study was to evaluate the antioxidant and anti-inflammatory properties of the oil extracted from seeds of a N. sativa cultivar produced in the Marche region of Italy, and to determine if the thymoquinone content, antioxidant properties, and biological activity would decay during storage. Cytotoxicity and anti-inflammatory properties of N. sativa oil were tested in an in vitro model of low-grade inflammation in Simpson–Golabi–Behmel syndrome human pre-adipocytes. The fresh extracted oil (FEO) contained 33% more thymoquinone than stored extracted oil (SEO), demonstrating that storage affects its overall quality. In addition, the thymoquinone content in the N. sativa oil from the Marche region cultivar was higher compared with other N. sativa oils produced in the Middle East and in other Mediterranean regions. Pro-inflammatory cytokines (e.g., Interleukin (IL)-1alpha, IL-1beta, IL-6) were differently modulated by fresh and stored extracts from N. sativa oils: FEO, containing more thymoquinone reduced IL-6 levels significantly, while SEO inhibited IL-1beta and had a higher antioxidant activity. Total antioxidant activity, reported as µM of Trolox, was 11.273 ± 0.935 and 6.103 ± 0.446 for SEO and FEO (p = 1.255 × 10−7), respectively, while mean values of 9.895 ± 0.817 (SEO) and 4.727 ± 0.324 (FEO) were obtained with the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay (p = 2.891 × 10−14). In conclusion, the oil capacity to counteract proinflammatory cytokine production does not strictly depend on the thymoquinone content, but also on other antioxidant components of the oil.
This study investigated the preventive efficacy of the crude oil extracted from Nigella sativa seeds in a rat model of arthritis induced by using complete Freund’s adjuvant (CFA). Nigella sativa oil at 1.82 mL/kg or 0.91 mL/kg (corresponding to 1596 and 798 mg/kg, respectively) was orally administered for 25 days from the day of immunization. One immunized group was treated orally with indomethacin (3 mg/kg) as a reference drug. Body weight growth rate, paw swelling, arthritis score, mechanical allodynia, locomotor activity and anxiety-like behavior were observed, and the levels of Interleukin 6 (IL-6), C-reactive protein, albumin and total cholesterol in plasma were measured on days 15 and 25. Nigella sativa oil showed anti-inflammatory, anti-arthritic and anti-nociceptive activities that were significant as compared to untreated arthritic rats but less than indomethacin. These results indicated that Nigella sativa oil significantly attenuated adjuvant-arthritis in rats and the higher dose (1.82 mL/kg) prevented the development of arthritis with an inhibition of 56%.
Understanding the relationship between genotype and phenotype is a central goal not just for genetics but also for medicine and biological sciences. Despite outstanding technological progresses, genetics alone is not able to completely explain phenotypes, in particular for complex diseases. Given the existence of a "missing heritability", growing attention has been given to non-mendelian mechanisms of inheritance and to the role of the environment. The study of interaction between gene and environment represents a challenging but also a promising field with high potential for health prevention, and epigenetics has been suggested as one of the best candidate to mediate environmental effects on the genome. Among environmental factors able to interact with both genome and epigenome, nutrition is one of the most impacting. Not just our genome influences the responsiveness to food and nutrients, but vice versa, nutrition can also modify gene expression through epigenetic mechanisms. In this complex picture, nutrigenetics and nutrigenomics represent appealing disciplines aimed to define new prospectives of personalized nutrition. This review introduces to the study of gene-environment interactions and describes how nutrigenetics and nutrigenomics modulate health, promoting or affecting healthiness through lifestyle, thus playing a pivotal role in modulating the effect of genetic predispositions.
Environmental exposure to pesticides during the early stages of development represents an important risk factor for the onset of neurodegenerative diseases in adult age. Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, can induce a Parkinson-like disease and cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. Through gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Thirty-three percent of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Further studies are however needed to elucidate the molecular mechanisms, but, despite this, an intergenerational PERM-induced damage on progenies has been identified for the first time.
l-carnitine supplementation has been used for cardiovascular health protection for a long time. Recently, trimethylamine-N-oxide (TMAO), which is an end product of l-carnitine metabolism via the activity of microbiota, has been identified as a cardiovascular disease (CVD) biomarker. The aim of this study was to assess the effect of 6 months of l-carnitine supplementation in a group of aged women engaged in a regular physical training. Platelet mitochondrial DNA methylation, an emerging and innovative biomarker, lipid profile and TMAO levels have been measured. TMAO increased after l-carnitine supplementation (before 344.3 ± 129.8 ng/mL vs. after 2216.8 ± 1869.0 ng/mL; n = 9; paired t-test, p = 0.02). No significant effects on TMAO were exerted by training alone (n = 9) or by l-leucine supplementation (n = 12). TMAO levels after 6 months of l-carnitine supplementation were associated with higher low-density lipoprotein-cholesterol (LDL-c) (Spearman Rho = 0.518, p = 0.003) and total cholesterol (TC) (Spearman Rho = 0.407, p = 0.026) levels. l-carnitine supplementation increased D-loop methylation in platelets (+6.63%; paired t-test, p = 0.005). D-loop methylation was not directly correlated to the TMAO augmentation observed in the supplemented group, but its increase inversely correlated with TC (Pearson coefficient = −0.529, p = 0.029) and LDL-c (Pearson coefficient = −0.439, p = 0.048). This evidence supports the hypothesis that the correlation between l-carnitine, TMAO and atherosclerosis might be more complex than already postulated, and the alteration of mitochondrial DNA (mtDNA) methylation in platelets could be involved in the pathogenesis of this multifactorial disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.