Background: RBCs produce H 2 S but, lacking mitochondria, are devoid of the canonical sulfide oxidation pathway. Results: RBCs utilize methemoglobin to catalyze H 2 S oxidation producing thiosulfate and polysulfide. Conclusion: In the presence of NADPH and a reductase, ferric sulfide hemoglobin is converted to oxyhemoglobin, completing the sulfide oxidation cycle. Significance: We describe a novel mechanism for H 2 S oxidation that may be pertinent to other hemeproteins.
The use of liquid biofuels has expanded over the past decade in response to policies such as the U.S. Renewable Fuel Standard (RFS) that promote their use for transportation. One rationale is the belief that biofuels are inherently carbon neutral, meaning that only productionrelated greenhouse gas (GHG) emissions need to be tallied when comparing them to fossil fuels. This assumption is embedded in the lifecycle analysis (LCA) modeling used to justify and administer such policies. LCA studies have often found that crop-based biofuels such as corn ethanol and biodiesel offer at least modest net GHG reductions relative to petroleum fuels. Data over the period of RFS expansion enable empirical assessment of net CO 2 emission effects. This analysis evaluates the direct carbon exchanges (both emissions and uptake) between the atmosphere and the U.S. vehicle-fuel system (motor vehicles and the physical supply chain for motor fuels) over 2005-2013. While U.S. biofuel use rose from 0.37 to 1.34 EJ/yr over this period, additional carbon uptake on cropland was enough to offset only 37 % of the biofuel-related biogenic CO 2 emissions. This result falsifies the assumption of a full offset made by LCA and other GHG accounting methods that assume biofuel carbon neutrality. Once estimates from the literature for process emissions and displacement effects including land-use change are considered, the conclusion is that U.S. biofuel use to date is associated with a net increase rather than a net decrease in CO 2 emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.