Background: Never before have clinical trials drawn as much public attention as those testing interventions for COVID-19. We aimed to describe the worldwide COVID-19 clinical research response and its evolution over the first 100 days of the pandemic. Methods: Descriptive analysis of planned, ongoing or completed trials by April 9, 2020 testing any intervention to treat or prevent COVID-19, systematically identified in trial registries, preprint servers, and literature databases. A survey was conducted of all trials to assess their recruitment status up to July 6, 2020. Results: Most of the 689 trials (overall target sample size 396,366) were small (median sample size 120; interquartile range [IQR] 60-300) but randomized (75.8%; n=522) and were often conducted in China (51.1%; n=352) or the USA (11%; n=76). 525 trials (76.2%) planned to include 155,571 hospitalized patients, and 25 (3.6%) planned to include 96,821 health-care workers. Treatments were evaluated in 607 trials (88.1%), frequently antivirals (n=144) or antimalarials (n=112); 78 trials (11.3%) focused on prevention, including 14 vaccine trials. No trial investigated social distancing. Interventions tested in 11 trials with >5,000 participants were also tested in 169 smaller trials (median sample size 273; IQR 90-700). Hydroxychloroquine alone was investigated in 110 trials. While 414 trials (60.0%) expected completion in 2020, only 35 trials (4.1%; 3,071 participants) were completed by July 6. Of 112 trials with detailed recruitment information, 55 had recruited <20% of the targeted sample; 27 between 20-50%; and 30 over 50% (median 14.8% [IQR 2.0-62.0%]). Conclusions: The size and speed of the COVID-19 clinical trials agenda is unprecedented. However, most trials were small investigating a small fraction of treatment options. The feasibility of this research agenda is questionable, and many trials may end in futility, wasting research resources. Much better coordination is needed to respond to global health threats.
Background: Never before have clinical trials drawn as much public attention as those testing interventions for COVID-19. We aimed to describe the worldwide COVID-19 clinical research response and its evolution over the first 100 days of the pandemic. Methods: Descriptive analysis of planned, ongoing or completed trials by April 9, 2020 testing any intervention to treat or prevent COVID-19, systematically identified in trial registries, preprint servers, and literature databases. A survey was conducted of all trials to assess their recruitment status up to July 6, 2020. Results: Most of the 689 trials (overall target sample size 396,366) were small (median sample size 120; interquartile range [IQR] 60-300) but randomized (75.8%; n=522) and were often conducted in China (51.1%; n=352) or the USA (11%; n=76). 525 trials (76.2%) planned to include 155,571 hospitalized patients, and 25 (3.6%) planned to include 96,821 health-care workers. Treatments were evaluated in 607 trials (88.1%), frequently antivirals (n=144) or antimalarials (n=112); 78 trials (11.3%) focused on prevention, including 14 vaccine trials. No trial investigated social distancing. Interventions tested in 11 trials with >5,000 participants were also tested in 169 smaller trials (median sample size 273; IQR 90-700). Hydroxychloroquine alone was investigated in 110 trials. While 414 trials (60.0%) expected completion in 2020, only 35 trials (4.1%; 3,071 participants) were completed by July 6. Of 112 trials with detailed recruitment information, 55 had recruited <20% of the targeted sample; 27 between 20-50%; and 30 over 50% (median 14.8% [IQR 2.0-62.0%]). Conclusions: The size and speed of the COVID-19 clinical trials agenda is unprecedented. However, most trials were small investigating a small fraction of treatment options. The feasibility of this research agenda is questionable, and many trials may end in futility, wasting research resources. Much better coordination is needed to respond to global health threats.
Background Glioblastoma is the deadliest brain tumor in adults and the standard-of-care consists of surgery followed by radiation and treatment with temozolomide. Overall survival times for patients suffering from glioblastoma are unacceptably low indicating an unmet need for novel treatment options. Methods Using patient-derived HK-157, HK-308, HK-374, and HK-382 glioblastoma lines, the GL261 orthotopic mouse models of glioblastoma and HK-374 patient-derived orthotopic xenografts we tested the effect of radiation and the dopamine receptor antagonist quetiapine on glioblastoma self-renewal in vitro and survival in vivo. A possible resistance mechanism was investigated using RNA-Sequencing. The blood-brain-barrier-penetrating statin atorvastatin was used to overcome this resistance mechanism. All statistical tests were 2-sided. Results Treatment of glioma cells with the dopamine receptor antagonist quetiapine reduced glioma cell self-renewal in vitro and combined treatment of mice with quetiapine and radiation prolonged the survival of glioma-bearing mice. The combined treatment induced the expression of genes involved in cholesterol biosynthesis. This rendered GL261 and HK-374 orthotopic tumors vulnerable to simultaneous treatment with atorvastatin and further statistically significantly prolonged the survival of C57BL/6 (n = 10 to 16 mice per group; median survival not reached; Log-Rank test, p < 0.001) and NSG mice (n = 8 to 21 mice per group; hazard ratio = 3.96, 95% confidence interval = 0.29 to 12.40; Log-Rank test, p < 0.001), respectively. Conclusions Our results indicate promising therapeutic efficacy with the triple combination of quetiapine, atorvastatin and radiation treatment against glioblastoma without increasing the toxicity of radiation. With both drugs readily available for clinical use our study could be rapidly translated into a clinical trial.
Background Normal tissue toxicity is an inevitable consequence of primary or secondary brain tumor radiotherapy. Cranial irradiation commonly leads to neurocognitive deficits that manifest months or years after treatment. Mechanistically, radiation-induced loss of neural stem/progenitor cells, neuroinflammation, and demyelination are contributing factors that lead to progressive cognitive decline. Methods The effects of 1-[(4-nitrophenyl)sulfonyl]-4-phenylpiperazine (NSPP) on irradiated murine neurospheres, microglia cells, and patient-derived gliomaspheres were assessed by sphere-formation assays, flow cytometry, and interleukin (IL)-6 enzyme-linked immunosorbent assay. Activation of the hedgehog pathway was studied by quantitative reverse transcription PCR. The in vivo effects of NSPP were analyzed using flow cytometry, sphere-formation assays, immunohistochemistry, behavioral testing, and an intracranial mouse model of glioblastoma. Results We report that NSPP mitigates radiation-induced normal tissue toxicity in the brains of mice. NSPP treatment significantly increased the number of neural stem/progenitor cells after brain irradiation in female animals, and inhibited radiation-induced microglia activation and expression of the pro-inflammatory cytokine IL-6. Behavioral testing revealed that treatment with NSPP after radiotherapy was able to successfully mitigate radiation-induced decline in memory function of the brain. In mouse models of glioblastoma, NSPP showed no toxicity and did not interfere with the growth-delaying effects of radiation. Conclusions We conclude that NSPP has the potential to mitigate cognitive decline in patients undergoing partial or whole brain irradiation without promoting tumor growth and that the use of this compound as a radiation mitigator of radiation late effects on the central nervous system warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.