Abstract:The aim of this study was to investigate whether resistance training at short or long triceps brachii fascicle length induces different muscular strength and architectural adaptations. Nine young, novice, female participants, were trained for 6 weeks (two sessions/week) performing 6 sets × 6-RM (repetition maximum) unilateral cable exercises either with push-downs at short fascicle length (S) or overhead extensions with the contralateral arm at long fascicle length (L) of triceps brachii. Before and after training, 1-RM elbow extension and triceps brachii muscle architecture were evaluated. Muscle architecture was analyzed at 50% and 60% of the upper-arm length. Two-dimensional longitudinal muscle area of the triceps long head was also analyzed. The results indicated that 1-RM increased 40.1 ± 21.3% and 44.5 ± 20.1% (p < 0.01) after S and L, respectively. Muscle thickness at 50% length was increased 10.7 ± 15.3% (p < 0.05) and 13.7 ± 9.0% (p < 0.01) after S and L, while at 60% it was increased 15.5 ± 18.8% (p < 0.05) and 19.4 ± 16.3% (p < 0.01), respectively. Longitudinal muscle area increased similarly after S and L (p < 0.01). Fascicle angle and length were not altered with training. These results indicate that muscle strength and architecture of elbow extensors adapt similarly during the first six weeks of resistance training at either long or short fascicle length.
Abstract:The rate of force development (RFD) is vital for power athletes. Lean body mass (LBM) is considered to be an essential contributor to RFD, nevertheless high RFD may be achieved by athletes with either high or low LBM. The aim of the study was to describe the relationship between lower-body LBM and RFD, and to compare RFD in taekwondo athletes and track and field (T&F) throwers, the latter having higher LBM when compared to taekwondo athletes. Nine taekwondo athletes and nine T&F throwers were evaluated for countermovement jumping, isometric leg press and leg extension RFD, vastus lateralis (VL), and medial gastrocnemius muscle architecture and body composition. Lower body LBM was correlated with RFD 0-250 ms (r = 0.81, p = 0.016). Taekwondo athletes had lower LBM and jumping power per LBM. RFD was similar between groups at 30-50 ms, but higher for throwers at 80-250 ms. RFD adjusted for VL thickness was higher in taekwondo athletes at 30 ms, but higher in throwers at 200-250 ms. These results suggest that lower body LBM is correlated with RFD in power trained athletes. RFD adjusted for VL thickness might be more relevant to evaluate in power athletes with low LBM, while late RFD might be more relevant to evaluate in athletes with higher LBM.
The purpose of the study was to investigate the effect of dry-land priming (DLP) versus swimming priming (SP) on the 50 m crawl performance of well-trained adolescent swimmers. Thirteen adolescent swimmers were randomly assigned to perform either a DLP or SP 24 h prior to a 50 m sprint crawl time-trial. Baseline measurements included a 50 m sprint crawl time-trial as a control (C) condition, the evaluation of body composition, countermovement jump (CMJ), isometric peak torque (IPT), and rate of torque development (RTD). Rating of perceived exertion (RPE) was obtained following the DLP and SP programs. Both DLP and SP significantly decreased the 50 m crawl time-trial, by −2.51 ± 2.43% and −2.59 ± 1.89% (p < 0.01), respectively, compared with the C time-trial. RPE was not different between DLP and SP (p = 0.919). CMJ performance remained unchanged after DLP and SP programs compared with the C trial (p > 0.05). The percentage decrease in the 50 m crawl after DLP was significantly correlated with the percentage decrease in the 50 m crawl following SP (r = 0.720, p = 0.006). CMJ power, lean body mass, IPT, and RTD were significantly correlated with 50 m crawl performance. These results suggest that both DLP and SP strategies, when applied 24 h prior to a 50 m crawl time-trial, may enhance performance in well-trained adolescent swimmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.