Our findings suggest that COPD is likely to already represent a very large public health problem in Africa. Moreover, rapidly ageing African population should expect a steady increase in the number of COPD cases in the next decade and beyond. The quantity and quality of available evidence does not match the size of the problem. There is a need for more research on COPD prevalence, but also incidence, mortality and risk factors in Africa. We hope this study will raise awareness of COPD in Africa and encourage further research.
Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed coherence (PDC), partial transfer entropy (PTE), partial symbolic transfer entropy (PSTE) and partial mutual information on mixed embedding (PMIME). The performance of the multivariate coupling measures is assessed on stochastic and chaotic simulated uncoupled and coupled dynamical systems for different settings of embedding dimension and time series length. The CGCI, PGCI and PDC seem to outperform the other causality measures in the case of the linearly coupled systems, while the PGCI is the most effective one when latent and exogenous variables are present. The PMIME outweighs all others in the case of nonlinear simulation systems.
We study some of the most commonly used mutual information estimators, based on histograms of fixed or adaptive bin size, k-nearest neighbors and kernels, and focus on optimal selection of their free parameters. We examine the consistency of the estimators (convergence to a stable value with the increase of time series length) and the degree of deviation among the estimators. The optimization of parameters is assessed by quantifying the deviation of the estimated mutual information from its true or asymptotic value as a function of the free parameter. Moreover, some common-used criteria for parameter selection are evaluated for each estimator. The comparative study is based on Monte Carlo simulations on time series from several linear and nonlinear systems of different lengths and noise levels. The results show that the k-nearest neighbor is the most stable and less affected by the method-specific parameter. A data adaptive criterion for optimal binning is suggested for linear systems but it is found to be rather conservative for nonlinear systems. It turns out that the binning and kernel estimators give the least deviation in identifying the lag of the first minimum of mutual information from nonlinear systems, and are stable in the presence of noise.
Measures of the direction and strength of the interdependence between two time series are evaluated and modified to reduce the bias in the estimation of the measures, so that they give zero values when there is no causal effect. For this, point shuffling is employed as used in the frame of surrogate data. This correction is not specific to a particular measure and it is implemented here on measures based on state space reconstruction and information measures. The performance of the causality measures and their modifications is evaluated on simulated uncoupled and coupled dynamical systems and for different settings of embedding dimension, time series length, and noise level. The corrected measures, and particularly the suggested corrected transfer entropy, turn out to stabilize at the zero level in the absence of a causal effect and detect correctly the direction of information flow when it is present. The measures are also evaluated on electroencephalograms (EEG) for the detection of the information flow in the brain of an epileptic patient. The performance of the measures on EEG is interpreted in view of the results from the simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.