The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer.
One of the most important and error-prone tasks in biological image analysis is the segmentation of touching or overlapping cells. Particularly for optical microscopy, including transmitted light and confocal fluorescence microscopy, there is often no consistent discriminative information to separate cells that touch or overlap. It is desired to partition touching foreground pixels into cells using the binary threshold image information only, and optionally incorporating gradient information. The most common approaches for segmenting touching and overlapping cells in these scenarios are based on the watershed transform. We describe a new approach called pixel replication for the task of segmenting elliptical objects that touch or overlap. Pixel replication uses the image Euclidean distance transform in combination with Gaussian mixture models to better exploit practically effective optimization for delineating objects with elliptical decision boundaries. Pixel replication improves significantly on commonly used methods based on watershed transforms, or based on fitting Gaussian mixtures directly to the thresholded image data. Pixel replication works equivalently on both 2-D and 3-D image data, and naturally combines information from multichannel images. The accuracy of the proposed technique is measured using both the segmentation accuracy on simulated ellipse data and the tracking accuracy on validated stem cell tracking results extracted from hundreds of live-cell microscopy image sequences. Pixel replication is shown to be significantly more accurate compared to other approaches. Variance relationships are derived, allowing a more practically effective Gaussian mixture model to extract cell boundaries for data generated from the threshold image using the uniform elliptical distribution and from the distance transform image using the triangular elliptical distribution.
While the field of engineering as a whole is largely male-dominated, biomedical engineering (BME) is one area poised to overturn this trend. Women in the United States were awarded only 20% of all engineering B.S. degrees in 2015; in BME, however, 40.9% of the degree recipients were women. This stands in stark contrast to the more traditional fields of mechanical and electrical engineering, where women were awarded just 13.2% and 12.5% of B.S. degrees, respectively. This trend toward more female participation in BME continues at both the M.S. and Ph.D. degree levels. In fact, in 2015, BME had the highest percentage of female engineering M.S. degree recipients in the United States of all engineering disciplines, according to the American Society for Engineering Education (Figure 1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.