The organization of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes, yet the activities of these organelles must be coordinated. For example, lipid metabolism is distributed between the endoplasmic reticulum (ER) for lipid synthesis, lipid droplets (LDs) for storage and transport, mitochondria and peroxisomes for β-oxidation, and lysosomes for lipid hydrolysis and recycling1–5. Organelle contacts are increasingly understood to be vital for diverse cellular functions5–8. However, the spatial and temporal organization of organelles within the cell remains poorly characterized due to the inability of fluorescence imaging-based approaches to distinguish more than a few fluorescent labels in a single image9. Here we present a systems-level analysis of the organelle interactome using a multispectral image acquisition method that overcomes the challenge of spectral overlap in the fluorescent protein palette. We employed confocal and lattice light sheet (LLS)10 instrumentation and an imaging informatics pipeline of five steps to achieve mapping of organelle numbers/volumes/speeds/positions and dynamic inter-organelle contacts in live fibroblast cells. We describe the frequency and locality of two-, three-, four-, and five-way interactions among six different membrane-bound organelles (ER, Golgi, lysosome, peroxisome, mitochondria and LD) and show how these relationships change over time. We demonstrate that each organelle has a characteristic distribution and dispersion pattern in three-dimensional space and that there is a reproducible pattern of contacts among the six organelles, impacted by microtubule and cell nutrient status. These live-cell confocal and LLS spectral-imaging approaches are applicable to any cell system expressing multiple fluorescent probes, whether in normal conditions or when cells are exposed to disturbances such as drugs, pathogens or stress. This methodology thus offers a powerful new descriptive tool and source for hypotheses about cellular organization and dynamics.
The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer.
This protocol and the accompanying software program called LEVER enable quantitative automated analysis of phase contrast time-lapse images of cultured neural stem cells. Images are captured at 5 min. intervals over a period of 5 to 15 days as the cells proliferate and differentiate. LEVER automatically segments, tracks and generates lineage trees of the stem cells from the image sequence. In addition to generating lineage trees capturing the population dynamics of clonal development, LEVER extracts quantitative phenotypic measurements of cell location, shape, movement, and size. When available, the system can include biomolecular markers imaged using fluorescence. It then displays the results to the user for highly efficient inspection and editing to correct any errors in the segmentation, tracking or lineaging. In order to enable high-throughput inspection, LEVER incorporates features for rapid identification of errors, and learning from user-supplied corrections to automatically identify and correct related errors.
Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. While the mechanisms coordinating the segregation of the genome are well known, the processes which ensure organelle segregation between daughter cells remain less well-understood 1 . Here, we identify multiple actin assemblies that play distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria through mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.