Dreissenid mussels are one of the most problematic aquatic invasive species (AIS) in North America, causing substantial ecological and economic effects. To date, dreissenid mussel control efforts in open water have included physical, biological, and chemical methods. The feasibility of successful dreissenid mussel management or eradication in lakes is relatively undocumented in the freshwater management literature. This review presents information on 33 open water dreissenid mussel control projects in 23 North America lakes. We reviewed data from past dreissenid mussel control projects and identified patterns and knowledge gaps to help inform adaptive management strategies. The three key lessons learned include (1) pre- and post-treatment survey methods that are designed to meet management objectives are beneficial, e.g., by sampling for all life stages and taking into account that no survey method is completely comprehensive; (2) defining the treatment area—particularly ensuring it is sufficiently large to capture all life stages present—is critical to meeting management objectives; and (3) control projects provide an opportunity to collect water chemistry, effects on non-target organisms, and other efficacy-related data that can inform safe and effective adaptive management.
Since their introduction to North America in the 1980s, research to develop effective control tools for invasive mussels (Dreissena polymorpha and D. rostriformis bugensis) has been ongoing across various research institutions using a range of testing methods. Inconsistencies in experimental methods and reporting present challenges for comparing data, repeating experiments, and applying results. The Invasive Mussel Collaborative established the Toxicity Testing Work Group (TTWG) in 2019 to identify “best practices” and guide development of a standard framework for dreissenid mussel toxicity testing protocols. We reviewed the literature related to laboratory‐based dreissenid mussel toxicity tests and determined the degree to which standard guidelines have been used and their applicability to dreissenid mussel testing. We extracted detailed methodology from 99 studies from the peer‐reviewed and gray literature and conducted a separate analysis for studies using presettlement and postsettlement mussels. We identified specific components of methods and approaches that could be refined or standardized for dreissenid mussels. These components included species identification, collection methods, size/age class distinction, maintenance practices, testing criteria, sample size, response measures, reporting parameters, exposure methods, and mortality criteria. We consulted experts in the field of aquatic toxicology and dreissenid mussel biology on our proposed. The final recommendations contained in the present review are based on published standard guidelines, methods reported in the published and gray literature, and the expertise of TTWG members and an external panel. In addition, our review identifies research needs for dreissenid mussel testing including improved methods for early–life stage testing, comparative data on life stages and between dreissenid mussel species, inclusion of a reference toxicant, and additional testing of nontarget species (i.e., other aquatic organisms). Environ Toxicol Chem 2023;42:1649–1666. © 2023 His Majesty the King in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Dreissenid mussels are one of the most problematic aquatic invasive species (AIS) in North America, causing significant ecological and economic impacts. To date, dreissenid mussel control efforts in open water have included physical, biological, and chemical methods. The feasibility of successful dreissenid mussel management or eradication in lakes is relatively undocumented in the freshwater management literature. This review presents information on 33 open water dreissenid mussel control projects in 23 North America lakes. We reviewed data from past dreissenid mussel control projects and identified patterns and knowledge gaps to help inform adaptive management strategies. The three key lessons learned include 1) pre- and post-treatment survey methods should be designed to meet management objectives, e.g., by sampling for all life stages and taking into account that no survey method is completely comprehensive; 2) defining the treatment area – particularly ensuring it is sufficiently large to capture all life stages present – is critical to meeting management objectives; and 3) control projects provide an opportunity to collect mortality, depth, water chemistry, eDNA, effects on non-target organisms, and other efficacy-related data that can inform safe and effective adaptive management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.