Systemic lupus erythematosus (SLE) is characterized by the production of autoantibodies that are frequently directed against nucleic acid-associated antigens. To better understand how B cells reactive with such antigens are regulated, we generated a model system in which heavy and light chain genes encoding 564 immunoglobulin have been targeted to the heavy and light chain loci of the nonautoimmune C57BL/6 mouse strain. This antibody recognizes RNA, single-stranded DNA, and nucleosomes. We show that B cells expressing this immunoglobulin were activated, producing class-switched autoantibody in vivo despite the apparently normal induction of anergy. This autoantibody production was largely dependent on Toll-like receptor 7 (TLR7). We further show that production of these autoantibodies was sufficient to cause kidney pathology in these mice. These results demonstrate that the particular threat of nucleic acid-containing autoantigens lies in their ability to bind both antigen receptor and TLR7.
SummaryThe stroma as a crucial target in rat mammary gland carcinogenesis
Exposure of the fetus to excess estrogen is believed to increase the risk of developing breast cancer during adult life. Fetal exposure to low doses of the xenoestrogen bisphenol A resulted in long-lasting effects in the mouse mammary gland that were manifested during adult life. It enhanced sensitivity to estradiol, decreased apoptosis, increased the number of progesterone receptor-positive epithelial cells at puberty and increased lateral branching at 4 months of age. We now report that fetal exposure to 2.5, 25, 250 and 1000μg bisphenol A/kg body weight/day induces the development of ductal hyperplasias and carcinoma in situ at postnatal day 50 and 95 in rats. These highly proliferative lesions have an increased number of estrogen receptor-α positive cells. Thus, fetal bisphenol A exposure is sufficient to induce the development of preneoplastic and neoplastic lesions in the mammary gland in the absence of any additional treatment aimed at increasing tumor development.
To investigate the capacity of lupus autoAb to produce glomerular immune deposits (ID) and nephritis, 24 murine monoclonal (m) anti-DNA antibodies (Ab), derived from either MRL-lpr/lpr, SNF1 or NZB lupus-prone mice and selected based on properties shared with nephritogenic Ig, were administered i.p. (as hybridomas) and i.v. (as purified Ig) to normal mice; at least four mice/mAb were evaluated. Three general patterns of immune deposit formation (IDF) were observed: extracellular ID within glomeruli (+/- blood vessels, N = 8); intranuclear ID (N = 5); or minimal or no ID (N = 11). The four MRL m anti-DNA Ab that produced significant extracellular ID demonstrated different disease profiles including: (a) mesangial and subendothelial ID with anti-basement membrane staining, associated with proliferative glomerulonephritis, PMN infiltration, and proteinuria; (b) diffuse fine granular mesangial and extraglomerular vascular ID, associated with proliferative glomerulonephritis and proteinuria; (c) dense intramembranous ID and intraluminal ID, associated with capillary wall thickening, mesangial interposition and expansion, aneurysmal dilatation and intraluminal occlusion of glomerular capillary loops, and heavy proteinuria; and (d) mesangial and extraglomerular vascular ID, associated with mild segmental mesangial expansion, without proteinuria. These MRL mAb were derived from four different mice, and they had variable pIs and isotypes. They all cross reacted with multiple autoantigens (autoAg), however, their autoAg binding profiles were distinguishable. Among the SNF1 derived mAb, four produced histologically and clinically indistinguishable disease characterized by diffuse mesangial and capillary wall ID, associated with cellular proliferation/infiltration and proteinuria. Three of the four mAb were derived from the same mouse and were clonally related; they were: IgG2b with SWR allotype, relatively cationic, highly cross reactive with similar Ag binding patterns, idiotypically related and encoded by identical VH and nearly identical VL sequences. We conclude that both the capacity of lupus autoAb to form ID and the location of IDF are dependent on properties unique to individual Ig. The results also indicate that the Ag binding region of the autoAb is influential in this process, and they suggest that multiple Ab-Ag interactions contribute to IDF in individuals with lupus nephritis. Furthermore, these observations raise the possibility that the pathologic and clinical abnormalities resulting from these interactions are influenced by the location of IDF, and that the dominant interaction, in a given individual, may be highly influential in the phenotypic expression of nephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.