A digital twin is a digital representation of a physical asset reproducing its data model, its behaviour and its communication with other physical assets. Digital twins act as a digital replica for the physical object or process they represent, providing nearly real-time monitoring and evaluation without being in close proximity. Although most of their concrete applications can be found mainly in the industrial context, healthcare represents another relevant area where digital twins can have a disruptive impact. The main research question tackled by this paper is about the integration of digital twins with agents and Multi-Agent Systems (MAS) technologies in healthcare. After providing an overview of the application of digital twins in healthcare, in this paper, we discuss our vision about agent-based digital twins, and we present a first case study, about the application of agent-based digital twins to the management of severe traumas.
Personal assistant agents can have an important role in healthcare as a smart technology to support physicians in their daily work, helping to tackle the increasing complexity of their task environment. In this paper we present and discuss a personal medical assistant agent technology for trauma documentation and management, based on the Belief-Desire-Intention (BDI) architecture. The purpose of the personal assistant agent is twofold: to assist the Trauma Team in doing precision tracking during a trauma resuscitation, so as to (automatically) produce an accurate documentation of the trauma, and to generate alerts at real-time, to be eventually displayed either on smart-glasses or room-display.
In trauma resuscitation, an accurate documentation is crucial to improve the quality of trauma care. Hospital emergency departments typically adopt handwritten paper records and flow sheets for acquiring data, which are often inaccurate. In this article, we describe TraumaTracker, a computer-based system for trauma tracking and documentation. Results demonstrate that completeness and accuracy of trauma documentation significantly improved using TraumaTracker, since it enables to add data and information that were not recorded in paper documentation – especially precise times and locations of events.
We introduce Spatial Tuples, an extension of the basic tuple‐based model for distributed multi‐agent system coordination where (a) tuples are conceptually placed in regions of the physical world and possibly move anchored to a mobile computational device, (b) the behaviour of standard Linda coordination primitives is extended so as to depend on the spatial properties of the coordinating agents, tuples, and the topology of space, and (c) the tuple space can be conceived as a virtual layer augmenting physical reality. Motivated by the needs of mobile augmented‐reality applications, Spatial Tuples explicitly aims at supporting space‐aware and space‐based coordination in agent‐based pervasive computing scenarios. This paper presents the coordination model, its formalization as a process algebra, a library of patterns of coordination it enables, and a discussion of application scenarios, challenges, and open issues for future works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.