An innovative development of pressurized gyration is presented, incorporating a directional nozzle system. Thus, nozzle-pressurized gyration is used to prepare polymeric fibers. In this work, three different polymeric fibers (polycaprolactone, polyvinylpyrrolidone, and polyethylene oxide) manufactured by the original pressurized gyration and nozzle-pressurized gyration are compared. Under the same processing parameters (working pressure, rotational speed, and collection distance), nozzle-pressurized gyration is proved to be a highly efficient spinning technology for uniform and uniaxially oriented fiber products. The effects of the spinning vessel geometry on the morphology and alignment of gyrospun fibers are elucidated. This work also reveals the relationship between fiber morphology and collection distance in nozzle-pressurized gyration. Varying the collection distance provides a useful approach to the synthesis of uniform fibers with anisotropic arrangement.
An innovative development of pressurized gyration is presented, incorporating a directional nozzle system. Thus, nozzle-pressurized gyration is used to prepare polymeric fibers. In this work, three different polymeric fibers (polycaprolactone, polyvinylpyrrolidone, and polyethylene oxide) manufactured by the original pressurized gyration and nozzle-pressurized gyration are compared. Under the same processing parameters (working pressure, rotational speed, and collection distance), nozzle-pressurized gyration is proved to be a highly efficient spinning technology for uniform and uniaxially oriented fiber products. The effects of the spinning vessel geometry on the morphology and alignment of gyrospun fibers are elucidated. This work also reveals the relationship between fiber morphology and collection distance in nozzle-pressurized gyration. Varying the collection distance provides a useful approach to the synthesis of uniform fibers with anisotropic arrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.