An innovative development of pressurized gyration is presented, incorporating a directional nozzle system. Thus, nozzle-pressurized gyration is used to prepare polymeric fibers. In this work, three different polymeric fibers (polycaprolactone, polyvinylpyrrolidone, and polyethylene oxide) manufactured by the original pressurized gyration and nozzle-pressurized gyration are compared. Under the same processing parameters (working pressure, rotational speed, and collection distance), nozzle-pressurized gyration is proved to be a highly efficient spinning technology for uniform and uniaxially oriented fiber products. The effects of the spinning vessel geometry on the morphology and alignment of gyrospun fibers are elucidated. This work also reveals the relationship between fiber morphology and collection distance in nozzle-pressurized gyration. Varying the collection distance provides a useful approach to the synthesis of uniform fibers with anisotropic arrangement.
Single-use face masks pose a threat to the environment and are not cost-effective, which prompts the need for developing reusable masks. In this study, pressurized gyration (PG) successfully produced bead-on-string polyvinylidene fluoride (PVDF) fibers with fiber diameters ranging from 2.3 μm to 26.1 μm, and bead diameters ranging from 60.9 μm to 88.5 μm by changing the solution parameters. The effect of the solution parameters on the crystalline phase was studied by Fourier-transform infrared spectroscopy (FT-IR), where the β-phase contents of PG PVDF fibers reached over 75%. The fiber morphology and β-phase contents of PG PVDF fibers indicated the potential mechanical and electrostatic filtration efficiency of PG PVDF fibers, respectively. Additionally, the hydrophobicity was investigated by static water contact angle tests, and the PVDF fibers showed superior hydrophobicity properties (all samples above 125°) over commercial polypropylene (PP) single-use masks (approximately 107°). This study supports the notion that the PG PVDF fiber mats are a promising candidate for future reusable face masks.
As a facile, efficient, and low‐cost fiber manufacturing strategy, pressurized gyration/rotation (PG) is attracting tremendous attention. This review provides a comprehensive introduction to the working setups, fundamental principles, processing parameters, and material feed properties of this technology. The characterizations of products prepared by this technology and their wide application fields are summarized. The development potentials and broader application prospects of PG are discussed. PG holds significant promise for the scale‐up of ultrafine fiber manufacturing.
An innovative development of pressurized gyration is presented, incorporating a directional nozzle system. Thus, nozzle-pressurized gyration is used to prepare polymeric fibers. In this work, three different polymeric fibers (polycaprolactone, polyvinylpyrrolidone, and polyethylene oxide) manufactured by the original pressurized gyration and nozzle-pressurized gyration are compared. Under the same processing parameters (working pressure, rotational speed, and collection distance), nozzle-pressurized gyration is proved to be a highly efficient spinning technology for uniform and uniaxially oriented fiber products. The effects of the spinning vessel geometry on the morphology and alignment of gyrospun fibers are elucidated. This work also reveals the relationship between fiber morphology and collection distance in nozzle-pressurized gyration. Varying the collection distance provides a useful approach to the synthesis of uniform fibers with anisotropic arrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.