[1] Gale Crater is filled by sedimentary deposits including a mound of layered deposits, Aeolis Mons. Using orbital data, we mapped the crater infillings and measured their geometry to determine their origin. The sediment of Aeolis Mons is interpreted to be primarily air fall material such as dust, volcanic ash, fine-grained impact products, and possibly snow deposited by settling from the atmosphere, as well as wind-blown sands cemented in the crater center. Unconformity surfaces between the geological units are evidence for depositional hiatuses. Crater floor material deposited around Aeolis Mons and on the crater wall is interpreted to be alluvial and colluvial deposits. Morphologic evidence suggests that a shallow lake existed after the formation of the lowermost part of Aeolis Mons (the Small yardangs unit and the mass-wasting deposits). A suite of several features including patterned ground and possible rock glaciers are suggestive of periglacial processes with a permafrost environment after the first hundreds of thousands of years following its formation, dated to~3.61 Ga, in the Late Noachian/Early Hesperian. Episodic melting of snow in the crater could have caused the formation of sulfates and clays in Aeolis Mons, the formation of rock glaciers and the incision of deep canyons and valleys along its flanks as well as on the crater wall and rim, and the formation of a lake in the deepest portions of Gale.
The detection of liquid water by the Mars Radar for Subsurface and Ionospheric Sounding (MARSIS), at the base of the South Polar Layered Deposits (SPLD) in Ultimi Scopuli, has
[1] We present a large-scale spring hypothesis for the formation of various enigmatic light-toned deposits (LTDs) on Mars. Layered to massive LTDs occur extensively in Valles Marineris, chaotic terrains, and several large craters, in particular, those located in Arabia Terra. Most of these deposits are not easily explained with either a single process or multiple ones, either in combination or occurring sequentially. Spring deposits can have a very wide range of internal facies and exhibit complex architectural variations. We propose the concept of large-scale spring deposits for explaining LTDs on Mars. Stable volcano-tectonic settings, such as the ones typical on Mars, are compatible with a large-scale, long-term, multistage formation of spring deposits. The large-scale spring deposit model can explain the formation of LTDs with a common process, although active in different times and locations, compatible with coeval local or regional processes and deposits, such as volcaniclastic ones. LTDs, if formed as spring deposits derived from subsurface fluids, could potentially offer favorable conditions both to life and to the fossilization of past life forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.