We introduce the transportation-annihilation distance W ♯ p between subprobabilities and derive contraction estimates with respect to this distance for the heat flow with homogeneous Dirichlet boundary conditions on an open set in a metric measure space. We also deduce the Bochner inequality for the Dirichlet Laplacian as well as gradient estimates for the associated Dirichlet heat flow.For the Dirichlet heat flow, moreover, we establish a gradient flow interpretation within a suitable space of charged probabilities. In order to prove this, we will work with the doubling of the open set, the space obtained by gluing together two copies of it along the boundary.
We introduce the transportation-annihilation distance W p between subprobabilities and derive contraction estimates with respect to this distance for the heat flow with homogeneous Dirichlet boundary conditions on an open set in a metric measure space. We also deduce the Bochner inequality for the Dirichlet Laplacian as well as gradient estimates for the associated Dirichlet heat flow. For the Dirichlet heat flow, moreover, we establish a gradient flow interpretation within a suitable space of charged probabilities. In order to prove this, we will work with the doubling of the open set, the space obtained by gluing together two copies of it along the boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.