S U M M A R YTo study the applicability of the passive seismic interferometry technique to near-surface geological studies, seismic noise recordings from a small scale 2-D array of seismic stations were performed in the test site of Nauen (Germany). Rayleigh wave Green's functions were estimated for different frequencies. A tomographic inversion of the traveltimes estimated for each frequency from the Green's functions is then performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved at engineering-geotechnical scales. Furthermore, a 2-D S-wave velocity cross-section is obtained by combining 1-D velocity structures derived from the inversion of the dispersion curves extracted at several points along a profile where other geophysical analyses were performed. It is shown that the crosssection from passive seismic interferometry provides a clear image of the local structural heterogeneities that are in excellent agreement with georadar and geoelectrical results. Such findings indicate that the interferometry analysis of seismic noise is potentially of great interest for deriving the shallow 3-D velocity structure in urban areas.
S U M M A R YA vertical array of accelerometers was installed in Ataköy (western Istanbul) with the longterm aim of improving our understanding of in situ soil behaviour, to assess the modelling and parametric uncertainties associated with the employed methodologies for strong-motion site-response analysis, and for shallow geological investigations. Geotechnical and geophysical investigations were carried out to define the subsoil structure at the selected site. Data associated with 10 earthquakes (2.7 < M < 4.3) collected during the first months of operation of the array were used to image the upgoing and downgoing waves by deconvolution of waveforms recorded at different depths. Results have shown that the velocity of propagation of the imaged upgoing and downgoing waves in the borehole is consistent with that of S or P waves, depending on the component of ground acceleration analysed but independent of the chosen signal window. In particular, an excellent agreement was found between the observed upgoing and downgoing wave traveltimes and the ones calculated using a model derived by seismic noise analysis of array data. The presence of a smaller pulse on the waveforms obtained by deconvolution of the horizontal components suggests both internal S-wave reflection and S-to-P mode conversion, as well as a not normal incidence of the wavefield. The presence of a pulse propagating with S-wave velocity in the uppermost 25 m in the waveforms obtained by the deconvolution of the vertical components suggests P-to-S mode conversion. These evidences imply that, even when site amplification is mainly related to 1-D effects, the standard practice in engineering seismology of deconvolving the surface recording down to the bedrock using an approximate S-wave transfer function (generally valid for vertical incidence of SH waves) might lead to errors in the estimation of the input ground motion required in engineering calculations. Finally, downgoing waves with significant amplitudes were found down to 70 m and even to 140 m depth. This result provides a warning about the use of shallow borehole recordings as input for the numerical simulation of ground motion and for the derivation of ground motion prediction relationships.
This article describes the Engineering Strong-Motion Database (ESM), developed in the framework of the European project Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (NERA, see Data and Resources). ESM is specifically designed to provide end users only with quality-checked, uniformly processed strong-motion data and relevant parameters and has done so since 1969 in the Euro-Mediterranean region. The database was designed for a large variety of stakeholders (expert seismologists, earthquake engineers, students, and professionals) with a user-friendly and straightforward web interface. Users can access earthquake and station information and download waveforms of events with magnitude ≥ 4:0 (unprocessed and processed acceleration, velocity, and displacement, and acceleration and displacement response spectra at 5% damping). Specific tools are also available to users to process strong-motion data and select ground-motion suites for codebased seismic structural analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.