A plethora of image and video-related applications involve complex processes that impose the need for hardware accelerators to achieve real-time performance. Among these, notable applications include the Machine Learning (ML) tasks using Convolutional Neural Networks (CNNs) that detect objects in image frames. Aiming at contributing to the CNN accelerator solutions, the current paper focuses on the design of Field-Programmable Gate Arrays (FPGAs) for CNNs of limited feature space to improve performance, power consumption and resource utilization. The proposed design approach targets the designs that can utilize the logic and memory resources of a single FPGA device and benefit mainly the edge, mobile and on-board satellite (OBC) computing; especially their image-processing- related applications. This work exploits the proposed approach to develop an FPGA accelerator for vessel detection on a Xilinx Virtex 7 XC7VX485T FPGA device (Advanced Micro Devices, Inc, Santa Clara, CA, USA). The resulting architecture operates on RGB images of size 80×80 or sliding windows; it is trained for the “Ships in Satellite Imagery” and by achieving frequency 270 MHz, completing the inference in 0.687 ms and consuming 5 watts, it validates the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.