We report on the effect of the morphological modification on optical properties and polarization of ZnO nanorods (NR). Here, the morphology and structure of the ZnO NR were modified by introducing different annealing temperatures. The increase of length and diameter and change in density of the ZnO NR were clearly observed by increasing the annealing temperature. We found that the samples show different oxygen vacancy (VO) and zinc interstitial (ZnI) concentrations. We suggest that the different concentrations of VO and ZnI are originated from morphological and structural modification. Our results reveal that optical absorption and polarization of ZnO NR could be enhanced by producing a high concentration of VO and ZnI. The modification of VO and ZnI promotes a decrease in the band gap and coexistence of high optical absorption and polarization in our ZnO NR. Our findings would give a broad insight into the morphological modification and characterization technique on ZnO NR. The high optical and polarization characteristics of ZnO NR are potential for developing the high-performance nanogenerator device for multitype energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.