Following human immunodeficiency virus type 1 (HIV-1) integration into the host cell's genome, the 5 long terminal repeat (LTR) is packaged into a highly specific chromatin structure comprised of an array of nucleosomes positioned with respect to important DNA sequence elements that regulate the transcriptional activity of the provirus. While several host cell factors have been shown to be important for chromatin remodeling and/or basal transcription, no specific mechanism that relieves the transcriptional repression imposed by nuc-1, a positioned nucleosome that impedes the start site of transcription, has been found. Since phorbol esters cause the rapid disruption of nuc-1 and markedly stimulate HIV-1 transcription, we looked for protein factors that associate with this region of the HIV-1 promoter in a phorbol-ester-dependent manner. We report here that ATF-3, JunB, and BRG-1 (the ATPase subunit of the 2-MDa human chromatin remodeling machine SWI/SNF) are recruited to the 3 boundary of nuc-1 following phorbol myristate acetate stimulation in Jurkat T cells. Analysis of the recruitment of BRG-1 in nuclear extracts prepared from Jurkat T cells and reconstitution of an in vitro system with purified components demonstrate that ATF-3 is responsible for targeting human SWI/SNF (hSWI/SNF) to the HIV-1 promoter. Importantly, this recruitment of hSWI/SNF required HMGA1 proteins. Further support for this conclusion comes from immunoprecipitation experiments showing that BRG-1 and ATF-3 can exist together in the same complex. Although ATF-3 clearly plays a role in the specific targeting of BRG-1 to the HIV-1 promoter, the maintenance of a stable association between BRG-1 and chromatin appears to be dependent upon histone acetylation. By adding BRG-1 back into a BRG-1-deficient cell line (C33A cells), we demonstrate that trichostatin A strongly induces the 5-LTR-driven reporter transcription in a manner that is dependent upon BRG-1 recruitment.
ATP-dependent chromatin-remodeling enzymes are linked to changes in gene expression; however, it is not clear how the multiple remodeling enzymes found in eukaryotes differ in function and work together. In this report, we demonstrate that the ATP-dependent remodeling enzymes ACF and Mi2 can direct consecutive, opposing chromatin-remodeling events, when recruited to chromatin by different transcription factors. In a cell-free system based on the immunoglobulin heavy chain gene enhancer, we show that TFE3 induces a DNase I-hypersensitive site in an ATP-dependent reaction that requires ACF following transcription factor binding to chromatin. In a second step, PU.1 directs Mi2 to erase an established DNase I-hypersensitive site, in an ATP-dependent reaction subsequent to PU.1 binding to chromatin, whereas ACF will not support erasure. Erasure occurred without displacing the transcription factor that initiated the site. Other tested enzymes were unable to erase the DNase I-hypersensitive site. Establishing and erasing the DNase I-hypersensitive site required transcriptional activation domains from TFE3 and PU.1, respectively. Together, these results provide important new mechanistic insight into the combinatorial control of chromatin structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.