This article is available online at http://dmd.aspetjournals.org ABSTRACT:Voriconazole is a new triazole antifungal agent with potent, widespectrum activity. Its pharmacokinetics and metabolism have been studied in mouse, rat, rabbit, dog, guinea pig, and humans after single and multiple administration by both oral and intravenous routes. Absorption of voriconazole is essentially complete in all species. The elimination of voriconazole is characterized by nonlinear pharmacokinetics in all species. Consequently, pharmacokinetic parameters are dependent upon dose, and a superproportional increase in area under the curve is seen with increasing dose in rat and dog toxicology studies. Following multiple administration, there is a decrease in systemic exposure. This is most pronounced in mouse and rat, less so in dog, and not observed in guinea pig or rabbit. Repeat-dose toxicology studies in mouse, rat, and dog have demonstrated that induction of cytochrome P450 by voriconazole (autoinduction of metabolism) is responsible for the decreased exposure in these species. Autoinduction of metabolism is not observed in humans, and plasma steady-state concentrations remain constant with time. Voriconazole is extensively metabolized in all species. The major pathways in humans involve fluoropyrimidine N-oxidation, fluoropyrimidine hydroxylation, and methyl hydroxylation. Also, N-oxidation facilitates cleavage of the molecule, resulting in loss of the fluoropyrimidine moiety and subsequent conjugation with glucuronic acid. Major pathways are represented in animal species. The major circulating metabolite in rat, dog, and human is the N-oxide of voriconazole. It is not thought to contribute to efficacy since it is at least 100-fold less potent than voriconazole against fungal pathogens in vitro.Voriconazole [VFEND,496, 1 (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidinyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol; Fig. 1) is a new antifungal agent that is a derivative of fluconazole, having one triazole moiety replaced by a fluoropyrimidine ring and a methyl group added to the propanol backbone (Richardson et al., 1995). This change in structure results in potent, wide-spectrum activity in vitro and a fungicidal action against various mold species, including Aspergillus (Barry and Brown, 1996;Murphy et al., 1997). In common with other azole antifungal agents, such as fluconazole and itraconazole, its primary mode of action is inhibition of fungal cytochrome P450-dependent 14␣-sterol demethylase, an essential enzyme in ergosterol biosynthesis (Sanati et al., 1997). Voriconazole shows a greater selectivity for the fungal enzyme than for the corresponding rat liver enzyme compared with both ketoconazole and itraconazole (Pye et al., 1995). Voriconazole is moderately lipophilic (log D 7.4 ϭ 1.8) and a single diastereomer with R-and S-stereochemistry by virtue of two chiral centers (2R, 3S) as shown in Fig. 1.Pharmacokinetic and metabolism studies have been performed in preclinical species as part of the voriconazole development pr...
With the dramatic increase in the number of new chemical entities (NCEs) arising from combinatorial chemistry and modern high-throughput bioassays, novel bioanalytical techniques are required for the rapid determination of the metabolic stability and metabolites of these NCEs. Knowledge of the metabolic site(s) of the NCEs in early drug discovery is essential for selecting compounds with favorable pharmacokinetic credentials and aiding medicinal chemists in modifying metabolic "soft spots". In development, elucidation of biotransformation pathways of a drug candidate by identifying its circulatory and excretory metabolites is vitally important to understand its physiological effects. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have played an invaluable role in the structural characterization and quantification of drug metabolites. Indeed, liquid chromatography (LC) coupled with atmospheric pressure ionization (API) MS has now become the most powerful tool for the rapid detection, structure elucidation, and quantification of drug-derived material within various biological fluids. Often, however, MS alone is insufficient to identify the exact position of oxidation, to differentiate isomers, or to provide the precise structure of unusual and/or unstable metabolites. In addition, an excess of endogenous material in biological samples often suppress the ionization of drug-related material complicating metabolite identification by MS. In these cases, multiple analytical and wet chemistry techniques, such as LC-NMR, enzymatic hydrolysis, chemical derivatization, and hydrogen/deuterium-exchange (H/D-exchange) combined with MS are used to characterize the novel and isomeric metabolites of drug candidates. This review describes sample preparation and introduction strategies to minimize ion suppression by biological matrices for metabolite identification studies, the application of various LC-tandem MS (LC-MS/MS) techniques for the rapid quantification and identification of drug metabolites, and future trends in this field.
An early understanding of key metabolites of drugs is crucial in drug discovery and development. As a result, several in vitro models typically derived from liver are frequently used to study drug metabolism. It is presumed that these in vitro systems provide an accurate view of the potential in vivo metabolites and metabolic pathways. However, no formal analysis has been conducted to validate their use. The goal of the present study was to conduct a comprehensive analysis to assess if the three commonly used in vitro systems, pooled human liver microsomes, liver S-9 fraction, and hepatocytes, adequately predict in vivo metabolic profiles for drugs. The second objective was to compare the overall capabilities of these three systems to generate in vivo metabolic profiles. Twenty-seven compounds in the Pfizer database and 21 additional commercially available compounds of diverse structure and routes of metabolism for which the human ADME data was available were analyzed in this study to assess the performance of the in vitro systems. The results suggested that all three systems reliably predicted human excretory and circulating metabolite profiles. Furthermore, the success in predicting primary metabolites and metabolic pathways was high (>70%), but the predictability of secondary metabolites was less reliable in the three systems. Thus, the analysis provides sufficient confidence in using in vitro systems to reliably produce primary in vivo human metabolites and supports their application in early discovery to identify metabolic spots for optimization of metabolic liabilities anticipated in humans in vivo. However, the in vitro systems cannot solely mitigate the risk of disproportionate circulating metabolites in humans and may need to be supplemented with metabolic profiling of plasma samples from first-in-human studies or early human radiolabeled studies.
UK-427,857 (4, 4-difluoro-N-{(1S)-3-[exo-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl}cy-clohexanecarboxamide) is a novel CCR5 antagonist undergoing investigation for use in the treatment of human immunodeficiency virus (HIV) infection.Pharmacokinetic and metabolism studies have been performed in mouse, rat, dog, and human after single and multiple administration by oral and intravenous routes. The compound has physicochemical properties that are borderline for good pharmacokinetics, being moderately lipophilic (log D 7.4 2.1) and basic (pK a 7.3), possessing a number of H-bonding functionalities, and with a molecular weight of 514. The compound was incompletely absorbed in rat (ϳ20-30%) but well absorbed in dog (>70%). Based on in vitro studies in Caco-2 cells, UK-427,857 has relatively poor membrane permeability, and transcellular flux is enhanced in the presence of inhibitors of P-glycoprotein. Further evidence for the involvement of P-glycoprotein in restricting the oral absorption of UK-427,857 was obtained in P-glycoprotein null mice (mdr1a/mdr1b knockout). In these animals, AUC after oral administration was 3-fold higher than in control animals. In oral dose escalation studies in humans, the compound demonstrated nonlinear pharmacokinetics, with increased dosenormalized exposure with increased dose size, consistent with saturation of P-glycoprotein. The oral dose-exposure relationship of UK-427,857 in humans was not reflected in either rat or dog. In animal species and humans, UK-427,857 undergoes some metabolism, with parent compound the major component present in the systemic circulation and excreta. Elimination of radioactive dose was primarily via the feces. In rat, parent compound was secreted via bile and directly into the gastrointestinal tract. Metabolites were products of oxidative metabolism and showed a high degree of structural consistency across species.The chemokine receptor, CCR5, acts as the major coreceptor involved in viral entry into the cell in the case of primary HIV infection. Therefore, blocking the CCR5 receptor prevents viral entry into host cells and should thus decrease viral load in HIV-1 infected individuals. This theory is supported by genetic evidence which shows that individuals lacking a functional CCR5 gene are highly resistant to HIV-1 infection (Liu et al., 1996;Samson et al., 1996;Chantry, 2004). UK-427,857 (4, 4-difluoro-N-{(1S)-3-[exo-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl}-cyclohexanecarboxamide) is a novel CCR5 receptor antagonist designed through a rational drug discovery program and is currently undergoing clinical evaluation (Bayes et al., 2003). UK-427,857 has a molecular weight of 514 and is a moderately lipophilic (log D 7.4 ϭ 2.1) and basic (pK a ϭ 7.3) molecule. The empirical formula is C 29 H 41 F 2 N 5 O and the structure is shown in Fig. 1.Pharmacokinetic studies with UK-427,857 were undertaken in rat and dog during the discovery program leading to...
AIMSTwo studies were conducted to: (i) quantify the amount of drug-related radioactivity in blood, plasma, urine and faeces following a 14 C-labelled dose of maraviroc; and (ii) investigate the pharmacokinetics, safety and tolerability of intravenous (i.v.) maraviroc and determine the absolute bioavailability of oral maraviroc. Metabolite profiling was also conducted. Data from both of these studies were used to construct a mass-balance model for maraviroc. METHODSStudy 1 was an open-label study in three healthy male subjects. All subjects received a single 300-mg oral solution dose of 14 C-labelled maraviroc. Study 2 included two cohorts of subjects. Cohort 1 involved a double-blind (third party open), four-way crossover study where eight subjects received escalating i.v. doses of maraviroc (3, 10 and 30 mg) with placebo insertion. Cohort 2 involved an open, two-way crossover study where 12 subjects received 30 mg maraviroc by i.v. infusion and 100 mg maraviroc orally in random order. In study 1, blood samples and all urine and faeces were collected up to at least 120 h postdose. In study 2, blood samples were taken at intervals up to 48 h postdose. Urine was also collected up to 24 h postdose in cohort 1 only. RESULTSAfter oral administration in study 1, maraviroc was rapidly absorbed with a plasma Tmax reached by 2 h postdose for all three subjects. The maximum concentrations of radioactivity also occurred within 2 h for all subjects. There was a higher amount of radioactivity in plasma than in blood (blood/plasma ratio~0.6 for AUCt and Cmax). Unchanged maraviroc was the major circulating component in plasma, accounting for~42% of the circulating radioactivity. Following a 300-mg 14 C-labelled maraviroc dose, means of 76.4% and 19.6% of radioactivity were recovered in the faeces and urine, respectively. The mean total recovery of dosed radioactivity was 96%, with the majority of radioactivity being recovered within 96 h postdose. Profiling of the urine and faeces showed similar and extensive metabolism in all subjects. Unchanged maraviroc was the major excreted component (33%). The major metabolic pathways were determined and involved oxidation and N-dealkylation. Intravenous doses of maraviroc (3-30 mg) were well tolerated in study 2, and drug exposure was approximately proportional to dose within the studied range. Approximately 23% of total clearance (44 l h ). Mean volume of distribution at steady state was 194 l. Absolute bioavailability of a 100-mg oral tablet dose, by comparison with a 30-mg i.v. dose, was calculated to be 23.1%. CONCLUSIONSMaraviroc is rapidly absorbed and extensively metabolized, although unchanged maraviroc is the major circulating component in plasma and is the major excreted component after oral dosing. The pharmacokinetics of maraviroc after i.v. administration is approximately proportional over the dose range studied. Renal clearance contributes 23% of total clearance. The absolute bioavailability of 100 mg oral maraviroc is 23%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.