Although drone appears in different applications, such as environmental inspection, agriculture or transportation, some aspects require more studies to clarify the efficient outcomes. One of them is to investigate the filtering performance such as Kalman and Complementary filters when the autonomous aerial system (AAS) handles its mission. However, it lacks the systematic research about these filters to provide the proper evaluation. Therefore, in this paper, the research topic related to AAS model to indicate the filtering effects in the agricultural application for making an alternative solution is presented. Firstly, the mathematical representation of system model is established in order to describe the dynamical performance and motion constraints. Then, the theory of filter structure is implemented to estimate the system state. The proposed design is validated in both numerical simulation and experiments. The system parameters that are monitored, include angular values of roll, pitch and yaw in three axes, motion parameters and its trajectories. By utilizing various sensing devices such as gyroscope, accelerometer and compass in real-world hardware, the experimental results could evaluate more precise and efficient design. The findings of this study are to (1) propose the model of AAS and proper filters, (2) launch the verified process and calibration, and (3) demonstrate the competitive performance among filters. From these results of our work, it could be clearly seen that the AAS plays an important role in daily applications and the related topics are still attractive.
In the early stage of the 21st century, humankind is facing high medical risks. To the best of our knowledge, there is currently no efficient way to stop chains of infections, and hence citizens suffer significantly increasing numbers of diseases. The most important factor in this scenario is the lack of necessary equipment to cure disease and maintain our living. Once breath cannot be guaranteed, humans find themselves in a dangerous state. This study aimed to design, control, model, and simulate mechanical ventilator that is open-source structure, lightweight, and portable, which is proper for patients to cure themselves at home. In the scope of this research, the hardware platform for the mechanical design, implementation of control rules, and some trials of both simulations and experiments are presented as our methodology. The proposed design of ventilator newly features the bioinspired mechanism, finger-like actuator, and flow rate-based control. Firstly, the approximate evaluation of the lung model is presented with some physiological characteristics. Owing to this investigation, the control scheme was established to adapt to the biological body. Moreover, it is essential for the model to be integrated to determine the appropriate performance of the closed-loop system. Derived from these theoretical computations, the innovative concept of mechanical design was demonstrated using the open-source approach, and the real-world model was constructed. In order to estimate the driving torque, the hardware modeling was conducted using mathematical expressions. To validate the proposed approach, the overall system was evaluated using Matlab/Simulink, and experiments with the proposed platform were conducted in two situations: 20 lpm as a reference flow rate for 4 seconds and 45 lpm for 2.5 seconds, corresponding to normal breath and urgent breath. From the results of this study, it can be clearly observed that the system’s performance ensures that accurate airflow is provided, although the desired airflow fluctuates. Based on the test scenario in hardware, the RMS (root-mean-square) values of tracking errors in airflow for both cases were 1.542 and 1.767. The proposed design could deal with changes in airflow, and this machine could play a role as a proper, feasible, and robust solution to support human living.
In the field of agriculture, the conservation of the agricultural products plays a vital role. The challenge in this topic is to manage a large scale of storehouse by manual works. Therefore, an implementation of IoT-based controller for monitoring in preserving fruits such as dragon fruit or jackfruit as a remotely monitored solution. First of all, the analysis of hardware platform and software programming is completed in this work. Several peripheral devices must be deployed in order to send or receive data online. Some sensing boards are also suggested to measure the physical variables such as temperature or humidity. In addition, the overall system is supervised in any time to ensure the whole process. After the procedure of data collection, there is optional filtering method to choose the correct information owing to the large scale of measuring values. Later, a GUI (Graphical User Interface) program is produced to support the system management. Any change in this system would be displayed as soon as possible. This software might be programmed by Visual Studio 2019 using C/C++ language. An operator could open this software in the host computer or mobile device with internet connection. MQTT (Message Queuing Telemetry Transport) protocol is suggested to maintain the data exchange between slaves and host. Thanks to this function, the flow of data could be transmitted fluently and continuously. To verify the effectiveness and feasibility of our approach, several tests are carried out. The system is validated when the environmental conditions are normally obtained. Although there needs several implementations to enhance the system performance, the use of the proposed design in practical system provides the robustness, effectiveness and feasibility for an industrial solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.