This paper seeks to develop an interpretable Machine Learning (ML) model for predicting the unconfined compressive strength (UCS) of cohesive soils stabilized with geopolymer at 28 days. Four models including Random Forest (RF), Artificial Neuron Network (ANN), Extreme Gradient Boosting (XGB), and Gradient Boosting (GB) are built. The database consists of 282 samples collected from the literature with three different types of cohesive soil stabilized with three geopolymer categories including Slag-based geopolymer cement, alkali-activated fly ash geopolymer and slag/fly ash-based geopolymer cement. The optimal model is selected by comparing their performances with each other. The values of hyperparameters are tuned by Particle Swarm Optimization (PSO) algorithm and K-Fold Cross Validation. Statistical indicators show the superior performance of the ANN model with three metrics performance such as coefficient of determination R2 = 0.9808, Root Mean Square Error RMSE = 0.8808 MPa and Mean Absolute Error MAE = 0.6344 MPa. In addition, a sensitivity analysis was performed to determine the influence of different input parameters on the UCS of cohesive soils stabilized with geopolymer. The order of feature effect can be ordered in descending order using the Shapley additive explanations (SHAP) value as follows: Ground granulated blast slag content (GGBFS) > Liquid limit (LL) > Alkali/Binder ratio (A/B) > Molarity (M) > Fly ash content (FA) > Na/Al > Si/Al. The ANN model can obtain the best accuracy using these seven inputs. LL has a negative correlation with the growth of unconfined compressive strength, whereas GGBFS has a positive correlation.
The paper has focused on studying the ability of using natural pozzolan to combine lime and cement in process of stabilized soil, implementing experimental contents for on-site soil including: grain composition, plastic limit, plasticity index, mineral parts and other common mechanical properties, standard compaction. Followed by experiments for soil, cement and pozzolan stabilized soil mixtures, including standard compaction, compressive strength. A suitable model of physical experiments to simulate and prove lime, cement and pozzolan stabilized soil meets the criteria for making waterproofing materials for earth dams in the Central Highlands
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.