The effects of low and high frequency ultrasound on the production of volatile compounds along with their derivation and corresponding off-flavours in milk and milk products are discussed in this review. The review will simultaneously discuss possible mechanisms of applied ultrasound and their respective chemical and physical effects on milk components in relation to the production of volatile compounds. Ultrasound offers potential benefits in dairy applications over conventional heat treatment processes. Physical effects enhance the positive alteration of the physicochemical properties of milk proteins and fat. However, chemical effects propagated by free radical generation cause redox oxidations which in turn produce undesirable volatile compounds such as aldehydes, ketones, acids, esters, alcohols and sulphur, producing off-flavours. The extent of volatile compounds produced depends on ultrasonic processing conditions such as sonication time, temperature and frequency. Low frequency ultrasound limits free radical formation and results in few volatile compounds, while high ultrasonic frequency induces greater level of free radical formation. Furthermore, the compositional variations in terms of milk proteins and fat within the milk systems influence the production of volatile compounds. These factors could be controlled and optimized to reduce the production of undesirable volatiles, eliminate off-flavours, and promote the application of ultrasound technology in the dairy field.
The effects of low-frequency ultrasound on the production of volatile compounds in model casein protein systems containing various fat concentrations of 2%, 4% and 6% (w/w) were investigated. Ultrasound application was performed at 20 kHz for up to 10 min which corresponded to energy densities ranging from 9.54 to 190.8 J mL −1 . Similar volatile compounds were detected both in pure fat and mixtures of casein and fat (CF) systems. These volatiles belonged to the groups of aldehydes, ketones, esters, alcohols and hydrocarbons, which were the products of oxidation of lipids or protein degradation due to acoustic cavitation. The amount of fat in the casein systems had minor effects on the production of volatiles, whereas the production of volatile compounds was significantly affected by the ultrasound treatment. Short sonication times <5 min generated similar volatile profiles to the untreated samples. In contrast, prolonged sonication for 5 and 10 min considerably increased the production of volatile compounds and the amounts of fatty acids. Thus, the application of low-frequency ultrasound for short periods should be considered to minimise the production of volatile compounds which can ultimately affect the taste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.