The major challenges on the statistical analysis of microarray data are the limited availability of samples, large number of measured variables and the complexity of distribution of the data obtained (e.g., multimodal). These phenomena could be considered in Bayesian method, used Bayesian Mixture Model (BMM) methods and Bayesian Model Averaging (BMA) methods. Modeling of Bayesian Mixture Model Averaging (BMMA) for microarray data was developed based on these two studies. One of the most important stages in BMMA is determination of the number of mixture components in the data setting as the most appropriate BMMA models. This paper proposes an algorithm for determining the number of mixture components in BMMA for microarray data. The algorithm is developed based on the simulation data generated from a case study of Indonesian and it has been implemented on the outside Indonesian microarray data. The results have succed to demonstrate two step algorithms, called Preliminary Process and Smoothing Process Algorithms, to the Indonesian case microarray data with the accuracy rate of 99.3690% and 99.9094% for the outside Indonesian microarray data.
<p>Hipertensi merupakan penyakit degeneratif yang memerlukan pengobatan yang berkesinambungan untuk meminimalkan terjadinya komplikasi. Pengobatan hipertensi dapat dilakukan dengan berbagai cara salah satunya dengan menggunakan obat herbal. Penggunaan obat herbal sangat bergantung pada pengetahuan, sikap, dan peran perawat agar penggunaan obat herbal dapat digunakan secara tepat dan benar. Penelitian ini merupakan penelitian kuantitatif dengan pendekatan C<em>ross </em><em>S</em><em>ectional</em><em> </em>yang bertujuan untuk mengidentifikasi tiga faktor penggunaan obat herbal hipertensi di puskesmas Putri Ayu Jambi dengan sampel berjumlah 82 orang. Pengambilan sampel dilakukan secara <em>proporsional random sampling</em>. Analisis data dilakukan secara <em>univariat </em>dan <em>bivariate.</em>Dari hasil uji statistik univariat diketahui sebanyak 47 (57,3%) responden menggunakan obat herbal, sebanyak 49 (59,8%) memiliki pengetahuan rendah, sebanyak 44 (53,7%) memiliki sikap yang negatif dan sebanyak 47 (62,2%) mengatakan peran perawat kurang baik. Berdasarkan hasil analisis <em>bivariat </em>menunjukkan ada hubungan yang bermakna antara pengetahuan (<em>P value </em>0,011), sikap <em>P value </em>0,003 dengan penggunaan obat herbal dan tidak ada hubungan yang bermakna antara peran perawat dengan penggunaan obat herbal hipertensi dengan <em>P value </em>0,132. Penelitian ini menunjukkan bahwa pengetahuan dan sikap masyarakat memiliki kontribusi terhadap penggunaan obat herbal pada pasien hipertensi sedangkan peran perawat tidak memiliki makna secara signifikan terhadap penggunaan obat herbal pada pasien hipertensi.</p><p> </p><p>Kata kunci: Hipertensi, Herbal, Obat</p>
The Bayesian Model Averaging (BMA) required the validation step to determine the accuracy of BMA model. Kolmogorov-Smirnov (KS) and Continuous Ranked Probability Score (CRPS) are used to validate the BMA model. The absolute difference between the empirical cumulative distribution and the hypothesis cumulative distribution were the basic idea of these methods. The KS method uses the distance concept and CRPS method uses the area concept. The validation of BMA model on microarray data by KS and CRPS methods would be identified in this paper. The results have succeed to indentify the performance of KS and CRPS in the validation to BMA model on microarray data with an average value of KS=0.469 and CRPS=0.211 for n=10 and then the value of KS=0.403 and CRPS=0.11 for n=12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.