Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated. Contestants were given a training set with 30 images from seven organs with annotations of 21,623 individual nuclei. A test dataset with 14 images taken from seven organs, including two organs that did not appear in the training set was released without annotations. Entries were evaluated based on average aggregated Jaccard index (AJI) on the test set to prioritize accurate instance segmentation as opposed to mere semantic segmentation. More than half the teams that completed the challenge outperformed a previous baseline [1]. Among the trends observed that contributed to increased accuracy were the use of color normalization as well as heavy data augmentation. Additionally, fully convolutional networks inspired by variants of U-Net [2], FCN [3], and Mask- RCNN [4] were popularly used, typically based on ResNet [5] or VGG [6] base architectures. Watershed segmentation on predicted semantic segmentation maps was a popular post-processing strategy. Several of the top techniques compared favorably to an individual human annotator and can be used with confidence for nuclear morphometrics.
Diatoms, a kind of algae microorganisms with several species, are quite useful for water quality determination, one of the hottest topics in applied biology nowadays. At the same time, deep learning and convolutional neural networks (CNN) are becoming an extensively used technique for image classification in a variety of problems. This paper approaches diatom classification with this technique, in order to demonstrate whether it is suitable for solving the classification problem. An extensive dataset was specifically collected (80 types, 100 samples/type) for this study. The dataset covers different illumination conditions and it was computationally augmented to more than 160,000 samples. After that, CNNs were applied over datasets pre-processed with different image processing techniques. An overall accuracy of 99% is obtained for the 80-class problem and different kinds of images (brightfield, normalized). Results were compared to previous presented classification techniques with different number of samples. As far as the authors know, this is the first time that CNNs are applied to diatom classification.
Aims: Evaluating expression of the human epidermal growth factor receptor 2 (HER2) by visual examination of immunohistochemistry (IHC) on invasive breast cancer (BCa) is a key part of the diagnostic assessment of BCa due to its recognized importance as a predictive and prognostic marker in clinical practice. However, visual scoring of HER2 is subjective, and consequently prone to interobserver variability. Given the prognostic and therapeutic implications of HER2 scoring, a more objective method is required. In this paper, we report on a recent automated HER2 scoring contest, held in conjunction with the annual PathSoc meeting held in Nottingham in June 2016, aimed at systematically comparing and advancing the state-of-the-art artificial intelligence (AI)-based automated methods for HER2 scoring. Methods and results: The contest data set comprised digitized whole slide images (WSI) of sections from 86 cases of invasive breast carcinoma stained with both haematoxylin and eosin (H&E) and IHC for HER2. The contesting algorithms predicted scores of the IHC slides automatically for an unseen subset of the data set and the predicted scores were compared with the 'ground truth' (a consensus score from at least two experts). We also report on a simple 'Man versus Machine' contest for the scoring of HER2 and show Address for correspondence: N Rajpoot and T Qaiser, Department of Computer Science, University of Warwick, UK. e-mails: n.m.rajpoot@ warwick.ac.uk; t.qaiser@warwick.ac.uk *These authors contributed equally to this study. 2018 , 72, 227-238. DOI: 10.1111 that the automated methods could beat the pathology experts on this contest data set. Conclusions: This paper presents a benchmark for comparing the performance of automated algorithms for scoring of HER2. It also demonstrates the enormous potential of automated algorithms in assisting the pathologist with objective IHC scoring.
This paper deals with automatic taxa identification based on machine learning methods. The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology. Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful for water quality assessment. The most relevant features for diatom description and classification have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon augmented to 300 samples/taxon. In addition to published morphological, statistical and textural descriptors, a new textural descriptor, Local Binary Patterns (LBP), to characterize the diatom's valves, and a log Gabor implementation not tested before for this purpose are introduced in this paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in computer systems are discussed for future work.
Glomerulus classification and detection in kidney tissue segments are key processes in nephropathology used for the correct diagnosis of the diseases. In this paper, we deal with the challenge of automating Glomerulus classification and detection from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs) between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, labeling is performed by applying the CNN classification to the image blocks under analysis. The results of the method indicate that this technique is suitable for correct Glomerulus detection in Whole Slide Images (WSI), showing robustness while reducing false positive and false negative detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.