The effects of inlet endwall boundary layer thickness and up-stream unsteady wakes are investigated experimentally in a low-speed linear cascade. The examined airfoil is the front-loaded L2F, a high-lift low-pressure turbine profile with high resistance to separation even in the low Reynolds number regime. Cases are documented with and without incoming wakes for two inlet endwall boundary layers of different thickness at a Reynolds number of Re = 30,000. Periodic incoming wakes are simulated with moving bars upstream of the cascade. The inlet endwall boundary layer is conditioned with a two-part splitter plate, one part downstream and one part upstream of the wake generator. By the documentation of pressure distributions on the blades, velocity profiles in the cascade inlet as well as total pressure loss and phase-locked velocity data in the outlet, this work attempts to show that varying the inlet endwall boundary layer thickness combined with the effect of incoming wakes has significant influence on the performance of blades with relatively low aspect ratio in cascade experiments. Depending on boundary layer thickness, wakes are shown to have either a stronger impact on midspan or on endwall performance. Time-resolved velocity and vorticity plots additionally show the motion of the vortex and loss core at the blade trailing edge during the event of wake passing.
The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20 mm that intersect coplanar at an angle θ = 40 deg, the innermost in three, the outermost in one intersection level. Two additional nonintersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional (3D) Reynolds-averaged Navier–Stokes equations (RANS) simulations using the shear-stress transport (SST) turbulence model. The presented analysis uncouples local heat transfer (HT) coefficients from actually measured local temperatures but uses the time information of the thermocouples (TC) instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether HT is locally enhanced due to higher mass flow rates or the intersection effects.
The present study deals with the application of the transient thermochromic liquid crystal (TLC) technique in a flow network of intersecting circular passages as a potential internal turbine component cooling geometry. The investigated network consists of six circular passages with a diameter d = 20mm that intersect coplanar at an angle θ = 40°, the innermost in three, the outermost in one intersection level. Two additional non-intersecting passages serve as references. Such a flow network entails specific characteristics associated with the transient TLC method that have to be accounted for in the evaluation process: the strongly curved surfaces, the mixing and mass flow redistribution at each intersection point, and the resulting gradients between the wall and passage centerline temperatures. All this impedes the choice of a representative fluid reference temperature, which results in deviations using established evaluation methods. An alternative evaluation approach is introduced, which is supported by computational results obtained from steady-state three-dimensional RANS simulations using the SST turbulence model. The presented analysis uncouples local heat transfer coefficients from actually measured local temperatures but uses the time information of the thermocouples instead that represents the fluid temperature step change and evolution along the passages. This experimental time information is transferred to the steady-state numerical bulk temperatures, which are finally used as local references to evaluate the transient TLC experiments. As effective local mass flow rates in the passage sections are considered, the approach eventually allows for a conclusion whether heat transfer is locally enhanced due to higher mass flow rates or the intersection effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.