An advanced evaluation method for transient heat transfer experiments using thermochromic liquid crystals (TLCs) combining the advantages of standard hue and maximum intensity methods is presented. In order to obtain a global evaluation of locally correct heat transfer coefficients by using the one-dimensional solution of Fourier's equation, assuming heat conduction in a semi-infinite medium with a convective boundary condition, local input values have to be identified from measurements of the fluid and surface temperatures. For that reason, two different approaches have emerged. First, a two-dimensional numerical method has been adapted to evaluate the transient fluid temperature distributions in multi-pass systems from a few local measurements. Additionally, on the basis of latest calibration and indication experience of TLCs, especially in complex passages, an innovative temporal indication analysis method using a neural network has been implemented in the process of heat transfer evaluation.
Numerical results for an internal ribbed cooling channel including a 180 deg bend with a 2:1 inlet and a 1:1 aspect ratio outlet channel were validated against experimental results in terms of spatially resolved heat transfer distributions, pressure losses, and velocity distributions. The numerical domain consisted of one rib segment in the inlet channel and three ribs segments in the outlet channel to reduce the overall numerical effort and allow for an extensive parametric study. The results showed good agreement for both heat transfer magnitudes and spatial distributions, and the numerical results captured the predominate flow physics resulting from the 180 deg bend. The production of Dean vortices and acceleration of the flow in the bend produced strongly increased heat transfer on both the ribbed and unribbed walls in the outlet channel in addition to increases due to the ribs. Numerical simulations were performed for a wide range of divider wall-to-tip wall distances, which influenced the position of the highest heat transfer levels on the outlet walls and changed the shape of the heat transfer distribution on the tip wall. Analysis of section averages of heat transfer in the bend and outlet channel showed a strong influence of the tip wall distance, while no effect was seen upstream of the bend. A similarly large effect on pressure losses in the bend was observed with varying tip wall position. Trends in averaged heat transfer varied linearly with tip wall distance, while pressure losses followed a nonlinear trend, resulting in an optimum tip wall distance with respect to heat transfer efficiency.
An experimental and numerical investigation was conducted to assess the thermal performance of V- and W-shaped ribs in a rectangular channel. The ribs were located on one channel sidewall in order to simulate a typical combustor liner cooling. The cross section of the channel had an aspect ratio of 2:1. Local heat transfer coefficients were measured using the transient thermochromic liquid crystal technique. Pressure taps along the channel sidewall were used to obtain the periodic pressure losses. The rib height-to-hydraulic diameter ratio (e/Dh) was set to 0.02, and the rib pitch-to-height ratios (P/e) were 5 and 10. The Reynolds numbers investigated varied from 80,000 to 500,000. All rib configurations were additionally investigated numerically and the obtained computational results were compared with experimental data. For all computations the commercial software FLUENT™ was used with a two-layer k-ε turbulence model. It could be demonstrated that applying W-shaped ribs instead of V-shaped ribs has the advantage of an increased heat transfer enhancement, but is accompanied by a rise in pressure loss. Reducing the rib pitch-to-height ratio from 10 to 5 decreases the heat transfer enhancement, but results in a significantly reduced pressure loss. Finally, the best thermal performance was found for W-shaped ribs with a pitch-to-height ratio of 10, having a slightly increased pressure loss but with considerable rise in heat transfer enhancement compared to V-shaped ribs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.