The P300 speller is a common brain–computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject’s electroencephalogram (EEG) signal. Information about the structure of natural language can be valuable for BCI communication systems, but few attempts have been made to incorporate this domain knowledge into the classifier. In this study, we treat BCI communication as a hidden Markov model (HMM) where hidden states are target characters and the EEG signal is the visible output. Using the Viterbi algorithm, language information can be incorporated in classification and errors can be corrected automatically. This method was first evaluated offline on a dataset of 15 healthy subjects who had a significant increase in bit rate from a previously published naïve Bayes approach and an average 32% increase from standard classification with dynamic stopping. An online pilot study of five healthy subjects verified these results as the average bit rate achieved using the HMM method was significantly higher than that using the naïve Bayes and standard methods. These findings strongly support the integration of domain-specific knowledge into BCI classification to improve system performance and accuracy.
Objective The P300 speller is intended to restore communication to patients with advanced neuromuscular disorders, but clinical implementation may be hindered by several factors, including system setup, burden, and cost. Our goal was to develop a method that can overcome these barriers by optimizing EEG electrode number and placement for P300 studies within a population of subjects. Methods A Gibbs sampling method was developed to find the optimal electrode configuration given a set of P300 speller data. The method was tested on a set of data from 15 healthy subjects using an established 32-electrode pattern. Resulting electrode configurations were then validated using online prospective testing with a naïve Bayes classifier in 15 additional healthy subjects. Results The method yielded a set of four posterior electrodes (PO8, PO7, POZ, CPZ), which produced results that are likely sufficient to be clinically effective. In online prospective validation testing, no significant difference was found between subjects’ performances using the reduced and the full electrode configurations. Conclusions The proposed method can find reduced sets of electrodes within a subject population without reducing performance. Significance Reducing the number of channels may reduce costs, set-up time, signal bandwidth, and computation requirements for practical online P300 speller implementation.
Objective The P300 speller is a common brain–computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject’s electroencephalogram (EEG) signal. Information about the structure of natural language can be valuable for BCI communication, but attempts to use this information have thus far been limited to rudimentary n-gram models. While more sophisticated language models are prevalent in natural language processing literature, current BCI analysis methods based on dynamic programming cannot handle their complexity. Approach Sampling methods can overcome this complexity by estimating the posterior distribution without searching the entire state space of the model. In this study, we implement sequential importance resampling, a commonly used particle filtering (PF) algorithm, to integrate a probabilistic automaton language model. Main Result This method was first evaluated offline on a dataset of 15 healthy subjects, which showed significant increases in speed and accuracy when compared to standard classification methods as well as a recently published approach using a hidden Markov model (HMM). An online pilot study verified these results as the average speed and accuracy achieved using the PF method was significantly higher than that using the HMM method. Significance These findings strongly support the integration of domain-specific knowledge into BCI classification to improve system performance.
The P300 Speller is a common brain-computer interface communication system. There are many parallel lines of research underway to overcome the system’s low signal to noise ratio and thereby improve performance, including using famous face stimuli and integrating language information into the classifier. While both have been shown separately to provide significant improvements, the two methods have not yet been implemented together to demonstrate that the improvements are complimentary. The goal of this study is therefore twofold. First, we aim to compare the famous faces stimulus paradigm with an existing alternative stimulus paradigm currently used in commercial systems (i.e., character inversion). Second, we test these methods with language model integration to assess whether different optimization approaches can be combined to further improve BCI communication. In offline analysis using a previously published particle filter method, famous faces stimuli yielded superior results to both standard and inverting stimuli. In online trials using the particle filter method, all 10 subjects achieved a higher selection rate when using the famous faces flashing paradigm than when using inverting flashes. The improvements achieved by these methods are therefore complementary and a combination yields superior results to either method implemented individually when tested in healthy subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.