Object recognition from satellite images is a very important application for various purposes. Objects can be recognized based on certain features and then applying some algorithm to extract those objects. Basically object recognition is a classification problem. For various remote sensing applications, waterbody acts as an important object which needs to be extracted. It is wise and better if possible, to extract waterbody object automatically from satellite data without any human intervention. This can be achieved using machine learning techniques. Artificial Neural Network (ANN) is such technique which makes machine intelligent by providing learning to it. This intelligent machine can extract objects automatically. This paper presents a methodology to extract waterbody object from satellite data in an automatic manner with the help of ANN. Training and testing dataset have been created by a domain expert which then have been used to train Multi Layer Perceptron (MLP) using Error Back Propagation (EBP) learning algorithm. Confusion matrix and Kappa coefficient have been used for accuracy assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.