Object recognition from satellite images is a very important application for various purposes. Objects can be recognized based on certain features and then applying some algorithm to extract those objects. Basically object recognition is a classification problem. For various remote sensing applications, waterbody acts as an important object which needs to be extracted. It is wise and better if possible, to extract waterbody object automatically from satellite data without any human intervention. This can be achieved using machine learning techniques. Artificial Neural Network (ANN) is such technique which makes machine intelligent by providing learning to it. This intelligent machine can extract objects automatically. This paper presents a methodology to extract waterbody object from satellite data in an automatic manner with the help of ANN. Training and testing dataset have been created by a domain expert which then have been used to train Multi Layer Perceptron (MLP) using Error Back Propagation (EBP) learning algorithm. Confusion matrix and Kappa coefficient have been used for accuracy assessment.
Rapid and accurate prediction of soil available S, an important secondary nutrient, is crucial for its site-specific management in a cultivated region. Although traditional chemical analysis of any nutrient is an accurate method, but often costly, time-consuming and destructive in nature. Recently visible near-infrared (VIS-NIR) reflectance spectroscopic technique has gained its popularity for rapid, non-destructive and cost-effective assessment of soil nutrients. Hence, a study was carried out in an intensively cultivated region of Katol block of Nagpur, Maharashtra, during 2018-20 for rapid prediction of soil available S using spectroscopic technique. Both spectroscopic and chemical analyses were carried out using 132 georeferenced surface soil samples (0-15 cm depth). The descriptive statistical analysis showed that the available S content varied from 1.09 to 47.88 mg/kg. Multivariate models namely partial least square regression (PLSR) and random forest (RF) were applied to develop spectral models for S prediction from spectral dataset. Several statistical diagnostics like coefficient of determination (R2), root mean square error (RMSE), ratio of performance deviation (RPD) and ratio of performance to interquartile distance (RPIQ) were used to evaluate the performances of two models. The best prediction of S was achieved from nonlinear RF model (R2 = 0.71, RMSE = 8.86, RPD =1.18, RPIQ = 1.69) as compared to linear PLSR model (R2 = 0.53, RMSE = 9.04, RPD = 1.16, RPIQ = 1.66) datasets. Therefore, the result suggested applying non-linear multivariate model (RF) for obtaining best predictability for S from spectroscopic technique.
Rice is the staple food of more than half of the population of the world and India as well. One of the major constraints in rice production is frequent occurrence of pests and diseases and one of them is rice blast which often causes yield loss varying from 10 to 30%. Conventional approaches for disease assessment are time-consuming, expensive, and not real-time; alternately, sensor-based approach is rapid, non-invasive and can be scaled up in large areas with minimum time and effort. In the present study, hyperspectral remote sensing for the characterization and severity assessment of rice blast disease was exploited. Field experiments were conducted with 20 genotypes of rice having sensitive and resistant cultivars grown under upland and lowland conditions at Almora, Uttarakhand, India. The severity of the rice blast was graded from 0 to 9 in accordance to International Rice Research Institute (IRRI). Spectral observations in field were taken using a hand-held portable spectroradiometer in range of 350-2500 nm followed by spectral discrimination of different disease severity levels using Jeffires–Matusita (J-M) distance. Then, evaluation of 26 existing spectral indices (r≥0.8) was done corresponding to blast severity levels and linear regression prediction models were also developed. Further, the proposed ratio blast index (RBI) and normalized difference blast index (NDBI) were developed using all possible combinations of their correlations with severity level followed by their quantification to identify the best indices. Thereafter, multivariate models like support vector machine regression (SVM), partial least squares (PLS), random forest (RF), and multivariate adaptive regression spline (MARS) were also used to estimate blast severity. Jeffires–Matusita distance was separating almost all severity levels having values >1.92 except levels 4 and 5. The 26 prediction models were effective at predicting blast severity with R2 values from 0.48 to 0.85. The best developed spectral indices for rice blast were RBI (R1148, R1301) and NDBI (R1148, R1301) with R2 of 0.85 and 0.86, respectively. Among multivariate models, SVM was the best model with calibration R2=0.99; validation R2=0.94, RMSE=0.7, and RPD=4.10. The methodology developed paves way for early detection and large-scale monitoring and mapping using satellite remote sensors at farmers’ fields for developing better disease management options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.