a b s t r a c tDelivering hydrophobic drug within hydrophilic polymer matrix as carrier is usually a challenge. Here we report the synthesis of gelatin nanofibers by electrospinning, followed by testing them as a potential carrier for oral drug delivery system for a model hydrophobic drug, piperine. Electrospun gelatin nanofibers were crosslinked by exposing to saturated glutaraldehyde (GTA) vapor, to improve their water resistive properties. An exposure of only 6 min was not only adequate to control the early degradation with intact fiber morphology, but also significantly marginalized any adverse effects associated with the use of GTA. Scanning electron microscopy imaging, Fourier transform infrared spectroscopy and thermogravimetric analysis were done to study nanofiber morphology, stability of drug and effect of crosslinking. The pH of release medium was also varied as per the gastrointestinal tract for in-vitro drug release study. Results illustrate good compatibility of hydrophobic drug in gelatin nanofibers with promising controlled drug release patterns by varying crosslinking time and pH of release medium.
The aim of this study is to develop electrospun gelatin nanofibers based drug delivery carrier to achieve controlled and sustainable release of hydrophobic drug (piperine) for prolonged time. To accomplish this, we devised some strategies such as sandwiching the drug loaded gelatin nanofiber mesh with another gelatin nanofiber matrix without drug (acting as diffusion barrier), sequential crosslinking and finally, a combination of both. As fabricated multilayered electrospun nanofibers mesh was first characterized in terms of degradation study, morphology, drug-polymer interactions, thermal stability followed by studying their release kinetics in different physiological pH as per the gastrointestinal tract. Our results show that with optimized diffusional barrier support and sequential crosslinking together, a zero order sustained drug release up to 48 h may be achieved with a flexibility to vary the drug loading as per the therapeutic requirements. This work lays out the possibility of systematic design of multilayer nano-fiber mesh of a biopolymer as a drug delivery vehicle for hydrophobic drugs with a desired signature of zero order release for prolonged duration.
Blend of biodegradable hydrogels like sodium alginate/gelatin (SA/G) usually requires use of chemical cross-linkers to remain stable in aqueous media for drug delivery applications. This study targets the feasibility of having an entire spectrum of a model hydrophobic drug (piperine) release i.e. from burst to controlled release, by varying polymer viscosity and molecular weight of plasticizer with minimal use of cross-linkers. Swelling study, drug-polymer interactions and morphology analysis reveal the impact of viscosity variation on polymer matrix.
Herbal drugs are safe and show significantly fewer side effects than their synthetic counterparts. Curcumin (an active ingredient primarily found in turmeric) shows therapeutic properties, but its commercial use as a medication is unrealized, because of doubts about its potency. The literature reveals that electrospun nanofibers show simplicity, efficiency, cost, and reproducibility compared to other fabricating techniques. Forcespinning is a new technique that minimizes limitations and provides additional advantages to electrospinning. Polymer-based nanofibers—whose advantages lie in stability, solubility, and drug storage—overcome problems related to drug delivery, like instability and hydrophobicity. Curcumin-loaded polymer nanofibers show potency in healing diabetic wounds in vitro and in vivo. The release profiles, cell viability, and proliferation assays substantiate their efficacy in bone tissue repair and drug delivery against lung, breast, colorectal, squamous, glioma, and endometrial cancer cells. This review mainly discusses how polymer nanofibers interact with curcumin and its medical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.