We present the partial branching fraction for inclusive charmless semileptonic B decays and the corresponding value of the Cabibbo-Kobayashi-Maskawa matrix element |V{ub}|, using a multivariate analysis method to access approximately 90% of the B-->X{u}lnu phase space. This approach dramatically reduces the theoretical uncertainties from the b-quark mass and nonperturbative QCD compared to all previous inclusive measurements. The results are based on a sample of 657x10{6} BB[over ] pairs collected with the Belle detector. We find that DeltaB(B-->X{u}lnu;p(l){*B}>1.0 GeV/c)=1.963x(1+/-0.088{stat}+/-0.081{syst})x10{-3}. Corresponding values of |V{ub}| are extracted using several theoretical calculations.
Abstract. Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavorviolating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.
Flavor-universal neutrino self-interaction has been shown to ease the tension between the values of the Hubble constant measured from early and late Universe data. We introduce a self-interaction structure that is flavor-specific in the three active neutrino framework. This is motivated by the stringent constraints on new secret interactions among electron and muon neutrinos from several laboratory experiments. Our study indicates the presence of a strongly interaction mode which implies a late-decoupling of the neutrinos just prior to matter radiation equality. Using the degeneracy of the coupling strength with other cosmological parameters, we explain the origin of this new mode as a result of better fit to certain features in the CMB data. We find that if only one or two of the three active neutrino flavors are interacting, then the statistical significance of the strongly-interacting neutrino mode increases substantially relative to the flavor-universal scenario. However, the central value of the coupling strength for this interaction mode does not change by any appreciable amount in the flavor-specific cases. We also briefly analyze a scenario with more than three neutrino species of which only one is self-interacting. In none of the cases, we find a large enough Hubble constant that could resolve the so-called Hubble tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.