A search is presented for long-lived charged particles that decay within the CMS detector and produce the signature of a disappearing track. Disappearing tracks are identified as those with little or no associated calorimeter energy deposits and with missing hits in the outer layers of the tracker. The search uses proton-proton collision data recorded at √ s = 8 TeV that corresponds to an integrated luminosity of 19.5 fb −1 . The results of the search are interpreted in the context of the anomaly-mediated supersymmetry breaking (AMSB) model. The number of observed events is in agreement with the background expectation, and limits are set on the cross section of direct electroweak chargino production in terms of the chargino mass and mean proper lifetime. At 95% confidence level, AMSB models with a chargino mass less than 260 GeV, corresponding to a mean proper lifetime of 0.2 ns, are excluded.
Flavor-universal neutrino self-interaction has been shown to ease the tension between the values of the Hubble constant measured from early and late Universe data. We introduce a self-interaction structure that is flavor-specific in the three active neutrino framework. This is motivated by the stringent constraints on new secret interactions among electron and muon neutrinos from several laboratory experiments. Our study indicates the presence of a strongly interaction mode which implies a late-decoupling of the neutrinos just prior to matter radiation equality. Using the degeneracy of the coupling strength with other cosmological parameters, we explain the origin of this new mode as a result of better fit to certain features in the CMB data. We find that if only one or two of the three active neutrino flavors are interacting, then the statistical significance of the strongly-interacting neutrino mode increases substantially relative to the flavor-universal scenario. However, the central value of the coupling strength for this interaction mode does not change by any appreciable amount in the flavor-specific cases. We also briefly analyze a scenario with more than three neutrino species of which only one is self-interacting. In none of the cases, we find a large enough Hubble constant that could resolve the so-called Hubble tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.