We study contributions coming to ∆m B from one or more universal extra dimensions (UED) in which all the Standard Model fields can propagate. In the model with a single UED, the box diagrams for mixing are convergent and therefore insensitive to the cutoff scale of the theory. In the case of two UEDs, the result is not very sensitive to the cut-off scale due to GIM mechanism. Within the present range of the parameters at 1σ level, the lower bound on the compactification scale 1/R has been estimated to be 165 GeV for one UED and 280 GeV for two UEDs. The bound increases drastically if one can have a better determination of the B meson decay constant f B and the QCD correction parameter B B . For example, it rises to 740 GeV (for one UED) if the error (at 1σ) in the determination of f B √ B B from quenched latticecalculation is reduced to one-third from its present value. The UED contributions to the K system are strongly suppressed.
We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald-like scaling, , for the RFP and the ohmic tokamak, a mixed scaling, , for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, are taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.
A novel mechanism for ρ − ω mixing induced by neutron-proton asymmetry in nuclear matter is uncovered and the variation of the mixing angle with the extent of asymmetry is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.