This study aims to determine the effect of sterile and immersion duration on the success of sterilization of kencur (Kaempferia galanga L) leaf explants using in vitro culture techniques and to find out the types of contaminants that emerge. The study was conducted from October 2018 to February 2019, located at the Basic Agrotechnology Laboratory and Plant Engineering Laboratory, Faculty of Agriculture, Universitas Muhammadiyah Purwokerto. The design used was a randomized block design (RBD) with 15 treatments. Each treatment was repeated 3 times. The treatments were the immersed in 6% chlorine for 10 minutes (S1), for 15 minutes (S2), for 20 minutes (S3), the immersed in 0,1 g/ml HgCl2 for 1 minute (S4), for 3 minutes (S5), for 5 minutes (S6), the immersed in HgCl2 0,2 g/ml for 1 minute (S7), for 3 minutes (S8), for 5 minutes (S9), the immersed in HgCl2 0,3 g/ml for 1 minute (S10), for 3 minutes (S11), 5 minutes (S12), immersed in dithane 2 g/l for 1 hour (S13), for 12 hours (S14), for 24 hours (S15). The results showed that the treatment of Dithane sterile 2 g/l water with an immersion duration of 1 hour (S13) significantly affected the percentage of contamination and succeeded in reducing contamination by 44.44%, while the use of chlorine sterile and HgCl2 had no significant effect. The types of contaminants that appear are Macrophomoina sp., Aspergillus sp., Cladosporium sp., And Pseudomonas sp.
Modification of silica xerogel with TMCS (trimethylchlorosilane) reagent has been carried out to improve the hydrophobicity of silica xerogel. Silica xerogel was synthesized based on the sol-gel method using sodium silicate as a precursor, and citric acid as a catalyst, with a mole ratio of sodium silicate and citric acid, was 0.172: 0.004. The sol-gel process was carried out through several stages, i.e., hydrolysis and condensation of sodium silicate to form sol, gelation (sol transition to gel), aging, and drying. Surface modification was performed by studying the effect of TMCS: methanol: petroleum benzine volume ratio of 0.5:1:1, 1:1:1, 1.5:1:1, 2:1:1, and 2.5:1:1 on the characteristics of silica xerogel synthesized. FTIR, SEM, and GSA characterized the synthesized results. The results of FTIR characterization on silica xerogel with volume ratios of 2:1:1 and 2.5:1:1 indicate the presence of the Si‑C group absorption at a wavenumber of 848.68 cm-1 which shows that the formation of silyl groups on the modified silica xerogel surfaces occurs at a TMCS: methanol: petroleum benzine ratio of 2:1:1 and 2.5:1:1. SEM results indicate that the silica xerogels produced are porous. Meanwhile, the GSA analysis results show that the pore size distributions are in the mesoporous region with an average pore radius of 8-13 nm. The greater the volume of TMCS used, the higher the surface area, and the resulting xerogel’s hydrophobicity. Based on the contact angle and seeped time test, the highest hydrophobicity is produced by the material synthesized at a TMCS: methanol: PB volume ratio of 2.5:1:1 with a contact angle of 116.346°.
Effect of pH and determination of adsorption capacity of Cu(II), Ni(II) and Pb(II) heavy metal ions on adsorbent prepared from Eichhornia crassipes (eceng gondok) biomass has been investigated. The influence of media acidity on the adsorption characteristics was carried out by determining ions adsorbed at various pH in the range of 2-10, while an adsorption isotherm model of Langmuir was used to estimate the capacity of adsorption. Results showed that Cu(II) was optimally adsorbed at the range pH of 5-6, Ni(II) at 2-4, while Pb(II) reached an optimum adsorption at pH 2-3. The adsorption data of Cu(II), Ni(II) and Pb(II) for the adsorbent folowed quite well Langmuir isotherm model, confirmed that such chemisorptions involved on that process. The ions adsorption capacities (am) were 27.47, 16.69, and 15.04 mg/g for Pb(II), Cu(II), and Ni(II), respectively. Keywords: adsorption, heavy metal, Eichhornia crassipes, pH, capacity
Ionic-Imprinted Chitosan/Chlorella biomass sorbent (IICCb)
Padas stone is one of the natural mineral containing 67.5% of SiO2 compounds. In this research, synthesis of nanosilica was carried out by sol-gel method asistanced by 2.45 GHz microwave radiations with low (10%), medium (50%) and high (100%) power at 30 and 60 minutes of contact times. It was analyzed by XRD, BET, FTIR spectrophotometry and SEM. The synthesized silica was then used as absorbent for total organic carbon (TOC) of palm oil waste. The results show that the synthesized silica was a mixture of cristobalite and quartz type minerals according to ICDD No. 00-003-0271 and 01-083-287. The surface area and silicon dioxide contains are 12.174 m2/g and 76.325% for silica without microwave assistance (SiO2-TPMW); 12.796 m2/gand 86.385% for silica with 30 minutes on 10% microwave assistance(SiO2 -MW 10A); 12.735 m2/gand 86.254% for silica with 60 minutes on 10% microwave assistance (MW 10B); 13,659 m2/gand 87.211% for MW 50A; 13,583 m2/g and 86.684% for MW 50B;7.883 m2/gand 57.527% for MW 100A; also 8.752 m2/g and 37.725% for MW 100B, respectively. The use of silica as an absorbent of TOC shows the effectiveness of 62.89% (TPMW); 63.68% (MW 10A); 62.96% (MW 10B); 65.25% (MW 50A); 64.61% (MW 50B); 62.37% (MW 100A) and 61.18% (MW 100B) from the initial TOC of 1520 mg/L. Keywords: synthesis, nanosilica, padas stone, total organic carbon, oil waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.