Studies show that a single bout of exercise confers cognitive benefits. However, many individuals use psychoactive substances such as caffeine to enhance cognitive performance. The effects of acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal symptoms also remains unknown. The objectives of this study were to compare the effects of acute moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and reduced CWS comparably. WM performance was not reduced following caffeine deprivation.
Background An estimated 47 million people have dementia globally, and around 10 million new cases are diagnosed each year. Many lifestyle factors have been linked to cognitive impairment; one emerging modifiable lifestyle factor is sedentary time. Objective To conduct a systematic review and meta-analysis of peer-reviewed literature examining the association between total sedentary time with cognitive function in middle-aged and older adults under the moderating conditions of (a) type of sedentary time measurement; (b) the cognitive domain being assessed; (c) looking at sedentary time using categorical variables (i.e., high versus low sedentary time); and (d) the pattern of sedentary time accumulation (e.g., longer versus shorter bouts). We also aimed to examine the prevalence of sedentary time in healthy versus cognitively impaired populations and to explore how experimental studies reducing or breaking up sedentary time affect cognitive function. Lastly, we aimed to conduct a quantitative pooled analysis of all individual studies through meta-analysis procedures to derive conclusions about these relationships. Methods Eight electronic databases (EMBASE; Web of Science; PsycINFO; CINAHL; SciELO; SPORTDiscus; PubMed; and Scopus) were searched from inception to February 2021. Our search included terms related to the exposure (i.e., sedentary time), the population (i.e., middle-aged and older adults), and the outcome of interest (i.e., cognitive function). PICOS framework used middle-aged and older adults where there was an intervention or exposure of any sedentary time compared to any or no comparison, where cognitive function and/or cognitive impairment was measured, and all types of quantitative, empirical, observational data published in any year were included that were published in English. Risk of bias was assessed using QualSyst. Results Fifty-three studies including 83,137 participants met the inclusion criteria of which 23 studies had appropriate data for inclusion in the main meta-analysis. The overall meta-analysis suggested that total sedentary time has no association with cognitive function (r = −0.012 [95% CI − 0.035, 0.011], p = 0.296) with marked heterogeneity (I2 = 89%). Subgroup analyses demonstrated a significant negative association for studies using a device to capture sedentary time r = −0.035 [95% CI − 0.063, − 0.008], p = 0.012). Specifically, the domains of global cognitive function (r = −0.061 [95% CI − 0.100, − 0.022], p = 0.002) and processing speed (r = −0.067, [95% CI − 0.103, − 0.030], p < 0.001). A significant positive association was found for studies using self-report (r = 0.037 [95% CI − 0.019, 0.054], p < 0.001). Specifically, the domain of processing speed showed a significant positive association (r = 0.057 [95% CI 0.045, 0.069], p < 0.001). For prevalence, populations diagnosed with cognitive impairment spent significantly more time sedentary compared to populations with no known cognitive impairments (standard difference in mean = −0.219 [95% CI − 0.310, − 0.128], p < 0.001). Conclusions The association of total sedentary time with cognitive function is weak and varies based on measurement of sedentary time and domain being assessed. Future research is needed to better categorize domains of sedentary behaviour with both a validated self-report and device-based measure in order to improve the strength of this relationship. PROSPERO registration number: CRD42018082384.
Canadian 24 h movement guidelines recommend engaging in >150 min/week of moderate–vigorous-intensity physical activity and ≤8 h/day of sedentary time. Half of Canadian post-secondary students do not meet physical activity or sedentary time guidelines. This pan-Canadian study aimed to (1) identify commonly cited motivators/barriers to exercise, and (2) determine which motivators/barriers were most influential for attaining physical and sedentary activity guidelines. A total of 341 respondents (279 females, 23 ± 4 years old, 53% met activity guidelines, 49% met sedentary guidelines) completed an online survey regarding undergraduate student lifestyle behaviours. Improved physical health (74% of respondents), mental health (67%), physical appearance (60%), and athletic performance (28%) were the most common motivators to exercise. The most common barriers were school obligations (68%), time commitments (58%), job obligations (32%), and lack of available fitness classes (26%). Students citing improved athletic performance (odds ratio (OR) = 1.94, p = 0.02) were more likely to adhere to activity guidelines, while those who selected physical health (OR = 0.56, p = 0.03) and physical appearance (OR = 0.46, p = 0.001) as motivators were less likely to meet activity guidelines. Students who cited school obligations as a barrier were less likely (OR = 0.59, p = 0.03) to meet sedentary guidelines. The motivators and barriers identified provide a foundation for university-led initiatives aimed at promoting physical activity and reducing sedentary time among undergraduate students. Strategies that positively re-frame students’ physical health and appearance-based motivations for exercise may be particularly useful in helping more students achieve national activity recommendations.
IntroductionCognitive flexibility represents a core component of executive function that promotes the ability to efficiently alternate—or “switch”—between different tasks. Literature suggests that acute stress negatively impacts cognitive flexibility, whereas a single bout of aerobic exercise supports a postexercise improvement in cognitive flexibility. Here, we examined whether a single bout of aerobic exercise attenuates a stress-induced decrement in task-switching.Materials and MethodsForty participants (age range = 19–30) completed the Trier Social Stress Test (TSST) and were randomized into separate Exercise or Rest groups entailing 20-min sessions of heavy intensity exercise (80% of heart rate maximum via cycle ergometer) or rest, respectively. Stress induction was confirmed via state anxiety and heart rate. Task-switching was assessed prior to the TSST (i.e., pre-TSST), following the TSST (i.e., post-TSST), and following Exercise and Rest interventions (i.e., post-intervention) via pro- (i.e., saccade to veridical target location) and antisaccades (i.e., saccade mirror-symmetrical to target location) arranged in an AABB task-switching paradigm. The underlying principle of the AABB paradigm suggests that when prosaccades are preceded by antisaccades (i.e., task-switch trials), the reaction times are longer compared to their task-repeat counterparts (i.e., unidirectional prosaccade switch-cost).ResultsAs expected, the pre-TSST assessment yielded a prosaccade switch cost. Notably, post-TSST physiological measures indicated a reliable stress response and at this assessment a null prosaccade switch-cost was observed. In turn, post-intervention assessments revealed a switch-cost independent of Exercise and Rest groups.ConclusionAccordingly, the immediate effects of acute stress supported improved task-switching in young adults; however, these benefits were not modulated by a single bout of aerobic exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.