Osteoclasts are bone-resorbing cells derived from the monocyte/macrophage lineage. Excess osteoclast activity leads to reduced bone mineral density, a hallmark of diseases such as osteoporosis. Processes that regulate osteoclast activity are therefore targeted in current osteoporosis therapies. To identify and characterize drugs for treatment of bone diseases, suitable in vivo models are needed to complement cell-culture assays. We have previously reported transgenic medaka lines expressing the osteoclast-inducing factor receptor activator of nuclear factor κB ligand (Rankl) under control of a heat shock-inducible promoter. Forced Rankl expression resulted in ectopic osteoclast formation, as visualized by live imaging in fluorescent reporter lines. This led to increased bone resorption and a dramatic reduction of mineralized matrix similar to the situation in humans with osteoporosis. In an attempt to establish the medaka as an in vivo model for osteoporosis drug screening, we treated Rankl-expressing larvae with etidronate and alendronate, two bisphosphonates commonly used in human osteoporosis therapy. Using live imaging, we observed an efficient, dose-dependent inhibition of osteoclast activity, which resulted in the maintenance of bone integrity despite an excess of osteoclast formation. Strikingly, we also found that bone recovery was efficiently promoted after inhibition of osteoclast activity and that osteoblast distribution was altered, suggesting effects on osteoblast-osteoclast coupling. Our data show that transgenic medaka lines are suitable in vivo models for the characterization of antiresorptive or bone-anabolic compounds by live imaging and for screening of novel osteoporosis drugs.
Bone homeostasis requires continuous remodeling of bone matrix to maintain structural integrity. This involves extensive communication between bone-forming osteoblasts and bone-resorbing osteoclasts to orchestrate balanced progenitor cell recruitment and activation. Only a few mediators controlling progenitor activation are known to date and have been targeted for intervention of bone disorders such as osteoporosis. To identify druggable pathways, we generated a medaka (Oryzias latipes) osteoporosis model, where inducible expression of receptor-activator of nuclear factor kappa-Β ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, which can be assessed by live imaging. Here we show that upon Rankl induction, osteoblast progenitors up-regulate expression of the chemokine ligand Cxcl9l. Ectopic expression of Cxcl9l recruits mpeg1-positive macrophages to bone matrix and triggers their differentiation into osteoclasts. We also demonstrate that the chemokine receptor Cxcr3.2 is expressed in a distinct subset of macrophages in the aorta-gonad-mesonephros (AGM). Live imaging revealed that upon Rankl induction, Cxcr3.2-positive macrophages get activated, migrate to bone matrix, and differentiate into osteoclasts. Importantly, mutations in cxcr3.2 prevent macrophage recruitment and osteoclast differentiation. Furthermore, Cxcr3.2 inhibition by the chemical antagonists AMG487 and NBI-74330 also reduced osteoclast recruitment and protected bone integrity against osteoporotic insult. Our data identify a mechanism for progenitor recruitment to bone resorption sites and Cxcl9l and Cxcr3.2 as potential druggable regulators of bone homeostasis and osteoporosis.
Summary Transcriptome profiling of selected cells involved in bone formation, degeneration and repair provides novel insight into mechanisms of bone cell coupling and homeostasis. A medaka osteoporosis model was reported earlier, where excess bone resorption is triggered by induction of receptor activator of nuclear factor κB ligand (RANKL) expression, and bone cell behaviour visualized by live imaging. Herein a protocol for fluorescence‐activated cell sorting (FACS) is described that allows isolation of distinct bone cell types from larvae for subsequent RNA sequencing to detect molecular changes during different phases of bone degeneration and repair.
A Stable and Potent Inhibitor of Hedgehog-Signaling. -The compound (I) is a stable and tenfold more potent inhibitor of hedgehog-signaling than its parent cyclopamine. -(HERETSCH, P.; BUETTNER, A.; TZAGKAROULAKI, L.; ZAHN, S.; KIRCHNER, B.; GIANNIS*, A.; Chem. Commun. (Cambridge) 47 (2011) 26, 7362-7364, http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.