Terahertz (THz) irradiation of excised Eisenia andrei earthworms is shown to cause overriding of the genetically determined, endogenously mediated segment renewing capacity of the model animal. Single-cycle THz pulses of 5 µJ energy, 0.30 THz mean frequency, 293 kV/cm peak electric field, and 1 kHz repetition rate stimulated the cell proliferation (indicated by the high number of mitotic cells) and both histogenesis and organogenesis, producing a significantly higher number of regenerated segments. The most conspicuous alteration in THz-treated animals was the more intense development of the new central nervous system and blood vessels. These results clearly demonstrate that THz pulses are capable to efficiently trigger biological processes and suggest potential applications in medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.