Little is known about the potential threats of silver nanoparticles (AgNPs) to ecosystem health, with no detailed report existing on the stress and immune responses of soil invertebrates. Here we use earthworm primary cells, cross-referencing to human cell cultures with a particular emphasis on the conserved biological processes, and provide the first in vitro analysis of molecular and cellular toxicity mechanisms in the earthworm Eisenia fetida exposed to AgNPs (83 ± 22 nm). While we observed a clear difference in cytotoxicity of dissolved silver salt on earthworm coelomocytes and human cells (THP-1 cells, differentiated THP-1 cells and peripheral blood mononuclear cells), the coelomocytes and differentiated (macrophage-like) THP-1 cells showed a similar response to AgNPs. Intracellular accumulation of AgNPs in the coelomocytes, predominantly in a phagocytic population, was evident by several methods including transmission electron microscopy. Molecular signatures of oxidative stress and selected biomarker genes probed in a time-resolved manner suggest early regulation of oxidative stress genes and subsequent alteration of immune signaling processes following the onset of AgNP exposure in the coelomocytes and THP-1 cells. Our findings provide mechanistic clues on cellular innate immunity toward AgNPs that is likely to be evolutionarily conserved across the animal kingdom.
The median neurosecretory cells in abdominal ganglia of insects synthesize a number of putative hormones, which are abundant in the abdominal perisympathetic organs (PSOs). The peptide inventory of these prominent neurohemal release sites is best investigated in the American cockroach and strongly differs from that of head/thoracic neurohemal organs. In this study, we found a complete colocalization of all abundant neuropeptides in this hormonal system, including periviscerokinin-1 and -2, pyrokinin-5, YLSamide, VEAacid, and SKNacid. The first immunoreactive cells were detected on day 18 of embryonic development and already contained the complete set of peptides. By using antisera against the above-mentioned peptides, the development of this neurohormonal system could be studied and is described in detail. Subsequent electron microscopic immunogold stainings in PSO preparations revealed the costorage of PSO peptides in a single vesicle species. Surprisingly, all these peptides were found in axons containing clear vesicles, whereas all axons with dense core vesicles were totally devoid of immunoreactivity. Unlike the axons with dense core vesicles, immunostained axons ramify in the center of the PSO but exhibit only rare morphological signs of exocytosis. Instead, putative release sites of the clear vesicle-containing axons were detected peripherally to the PSOs, namely, on the hyperneural muscle.
Metamorphosis is a fundamental developmental process and has been intensively studied for various neuron types of Drosophila melanogaster. However, detailed accounts of the fate of identified peptidergic neurons are rare. We have performed a detailed study of the larval morphology and pupal remodelling of identified peptidergic neurons, the CAPA-expressing Va neurons of D. melanogaster. In the larva, Va neurons innervate abdominal median and transverse nerves that are typically associated with perisympathetic organs (PSOs), major neurohaemal release sites in insects. Since median and transverse nerves are lacking in the adult, Va neurites have to undergo substantial remodelling during metamorphosis. We have examined the hitherto uncharacterised gross morphology of the thoracic PSOs and the abdominal median and transverse nerves by scanning electron microscopy and found that the complete reduction of these structures during metamorphosis starts around pupal stage P7 and is completed at P9. Concomitantly, neurite pruning of the Va neurons begins at P6 and is preceded by the high expression of the ecdysone receptor (EcR) subtype B1 in late L3 larvae and the first pupal stages. New neuritic outgrowth mainly occurs from P7-P9 and coincides with the expression of EcR-A, indicating that the remodelling of the Va neurons is under ecdysteroid control. Immunogold-labelling has located the CAPA peptides to large translucent vesicles, which are released from the transverse nerves, as suggested by fusion profiles. Hence, the transverse nerves may serve a neurohaemal function in D. melanogaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.