Regeneration of body parts and their interaction with the immune response is a poorly understood aspect of earthworm biology. Consequently, we aimed to study the mechanisms of innate immunity during regeneration in Eisenia andrei earthworms. In the course of anterior and posterior regeneration, we documented the kinetical aspects of segment restoration by histochemistry. Cell proliferation peaked at two weeks and remitted by four weeks in regenerating earthworms. Apoptotic cells were present throughout the cell renewal period. Distinct immune cell (e.g., coelomocyte) subsets were accumulated in the newly-formed blastema in the close proximity of the apoptotic area. Regenerating earthworms have decreased pattern recognition receptors (PRRs) (e.g., TLR, except for scavenger receptor) and antimicrobial peptides (AMPs) (e.g., lysenin) mRNA patterns compared to intact earthworms. In contrast, at the protein level, mirroring regulation of lysenins became evident. Experimental coelomocyte depletion caused significantly impaired cell divisions and blastema formation during anterior and posterior regeneration. These obtained novel data allow us to gain insight into the intricate interactions of regeneration and invertebrate innate immunity.
Lumbricin and its orthologue antimicrobial peptides were typically isolated from annelids. In this report, mRNA for lumbricin and -serendipitously- a novel lumbricin-related mRNA sequence were identified in Eisenia andrei earthworms. The determined mRNA sequences of E. andrei lumbricin and lumbricin-related peptide consist of 477 and 575 nucleotides. The precursors of proline-rich E. andrei lumbricin and the related peptide contain 63 and 59 amino acids, respectively. Phylogenetic analysis indicated close relationship with other annelid lumbricins. Highest expression of both mRNAs appeared in the proximal part of the intestine (pharynx, gizzard), while other tested organs had moderate (body wall, midgut, ovary, metanephridium, seminal vesicles, ventral nerve cord) or low (coelomocytes) levels. During ontogenesis their expression revealed continuous increase in embryos. Following 48 h of in vivo Gram-positive bacteria challenge both mRNAs were significantly elevated in coelomocytes, while Gram-negative bacteria or zymosan stimulation had no detectable effects.
BackgroundBased on the phenotypic and functional characteristics unconventional T-lymphocytes such as invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells link the innate and adaptive immune responses. Up to now data are scarce about their involvement in pulmonary disorders including chronic obstructive pulmonary disease (COPD). This study explores simultaneously the frequencies of iNKT and MAIT cells in the peripheral blood and sputum of stable and exacerbating COPD patients.MethodsBy means of multicolor flow cytometry frequencies of total iNKT and MAIT cells and their subsets were enumerated in peripheral blood and sputum samples of healthy controls, and COPD patients. In addition, gene expression of TCR for iNKT, MAIT cells, and CD1d, MR1 were assessed by qPCR in the study cohorts.ResultsPercentages of total iNKT and MAIT cells were dramatically dropped in blood, and reduced numbers of iNKT cells were observed in the sputum of COPD patients. Furthermore decreased DN and increased CD4+ iNKT subsets, while increased DN and decreased CD8+ MAIT subpopulations were measured in the blood of COPD patients. Reduced invariant TCR mRNA levels in COPD patients had confirmed these previous findings. The mRNA expression of CD1d and MR1 were increased in stable and exacerbating COPD patients; however both molecules were decreased upon antibiotic and systemic steroid treatments.ConclusionsOur results support the notion that both invariant T-cell populations are affected in COPD. Further detailed analysis of invariant T cells could shed more light into the complex interactions of these lymphocyte groups in COPD pathogenesis.Electronic supplementary materialThe online version of this article (10.1186/s12931-017-0671-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.