The structure and functioning of estuarine fish assemblages have been analysed using data sets for 38 transitional waters covering all European latitudes, including NE Atlantic estuaries, Mediterranean lagoons and Scandinavian fjords. The fish species were assigned to functional guilds covering estuarine use, mode of feeding and reproductive strategy, thus describing the use made of transitional waters by fishes. The importance of estuaries as temporary biotopes (migration and nursery routes) for fish species has been identified together with the predominance of feeding on the detritivorous hyperbenthos and infauna. The high incidence of protective breeders in estuaries, as a mechanism to prevent the flushing out of young, has also been identified. These findings allow the validation of the functional guild approach, emphasising its use for the understanding of the functioning of estuaries and for their management and the protection of their ecological goods and services.
There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized).Five key requirements were identified for the practical application of BEF relationships: 1) a complete understanding of strength, direction and prevalence of marine BEF relationships, 2) an understanding of which biological components are influential within specific BEF relationships, 3) the biodiversity of the selected biological components can be measured easily, 4) detail which ecological mechanisms are the most important for generating marine BEF relationships, e.g. identity effects or complementarity, and 5) establish what proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships.Many positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems. Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation.Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria. This approach highlighted the main contributing biological components to the ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention.The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes.
3Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships.The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate.Based on the five requirements, the information required for immediate 'operationalization' of BEF relationships within marin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.