Background
Adequate nutrition therapy in critically ill patients poses a challenge because of the variable energy and substrate needs. The objective was to investigate whether nutrition therapy involving indirect calorimetry (IC), instead of equations for assessment of energy needs, could improve the nutrition status of critically ill patients.
Methods
Forty mechanically ventilated patients were randomized into a group in which energy needs were controlled by calorimetry (IC group) and a group treated with a formula‐based approach reflecting standard care (SC group). The primary outcome was change in the phase angle (PhA), a bioelectrical impedance parameter related to nutrition status and prognosis.
Results
The mean IC‐based energy requirement was lower than the formula‐based estimate (21.1 ± 6.4 versus [vs] 25 kcal/kg/d, P < .01). The IC group reached 98% ± 8% of the energy goal, whereas the SC group reached only 79% ± 29% (P < 0.05), although mean intake was similar in both groups. The protein intake goal was better met in the IC group (91% ± 24%) than the SC group (73% ± 33%). The PhA of the IC group did not change during treatment, whereas that of the SC group tended to decrease by 0.36° ± 0.86° (P = .077). A shorter length of stay in intensive care was observed in the IC than in the SC group (13 ± 8 vs 24 ± 20 days, P < .05).
Conclusion
Intensified individual nutrition therapy involving IC appears to be useful for improving nutrition status in critically ill patients.
High consumption of fructose and high-fructose corn syrup is related to the development of obesity-associated metabolic diseases, which have become the most relevant diet-induced diseases. However, the influences of a high-fructose diet on gut microbiota are still largely unknown. We therefore examined the effect of short-term high-fructose consumption on the human intestinal microbiota. Twelve healthy adult women were enrolled in a pilot intervention study. All study participants consecutively followed four different diets, first a low fructose diet (< 10 g/day fructose), then a fruit-rich diet (100 g/day fructose) followed by a low fructose diet (10 g/day fructose) and at last a high-fructose syrup (HFS) supplemented diet (100 g/day fructose). Fecal microbiota was analyzed by 16S rRNA sequencing. A high-fructose fruit diet significantly shifted the human gut microbiota by increasing the abundance of the phylum Firmicutes, in which beneficial butyrate producing bacteria such as Faecalibacterium, Anareostipes and Erysipelatoclostridium were elevated, and decreasing the abundance of the phylum Bacteroidetes including the genus Parabacteroides. An HFS diet induced substantial differences in microbiota composition compared to the fruit-rich diet leading to a lower Firmicutes and a higher Bacteroidetes abundance as well as reduced abundance of the genus Ruminococcus. Compared to a low-fructose diet we observed a decrease of Faecalibacterium and Erysipelatoclostridium after the HFS diet. Abundance of Bacteroidetes positively correlated with plasma cholesterol and LDL level, whereas abundance of Firmicutes was negatively correlated. Different formulations of high-fructose diets induce distinct alterations in gut microbiota composition. High-fructose intake by HFS causes a reduction of beneficial butyrate producing bacteria and a gut microbiota profile that may affect unfavorably host lipid metabolism whereas high consumption of fructose from fruit seems to modulate the composition of the gut microbiota in a beneficial way supporting digestive health and counteracting harmful effects of excessive fructose.
Background: The consumption of high amounts of fructose is associated with metabolic diseases. However, the underlying mechanisms are largely unknown. Objective: To determine the effects of high fructose intake on plasma metabolomics. Study design: We enrolled 12 healthy volunteers (six lean and six obese women, age 24–35 years) in a crossover intervention study. All participants carried out three diets: (1) low fructose (<10 g/day); (2) high fructose (100 g/day) from natural food sources (fruit); and (3) high fructose (100 g/day) from high fructose syrup (HFS). Outcome measures: The primary outcome was changes in plasma metabolites measured by targeted metabolomics. Results: High compared to low fructose diets caused a marked metabolite class separation, especially because of changes in acylcarnitine and lysophosphatidylcholine levels. Both high fructose diets resulted in a decrease in mean acylcarnitine levels in all subjects, and an increase in mean lysophosphatidylcholine and diacyl-phosphatidylcholine levels in obese individuals. Medium chain acylcarnitines were negatively correlated with serum levels of liver enzymes and with the fatty liver index. Discussion: The metabolic shifts induced by high fructose consumption suggest an inhibition of mitochondrial β-oxidation and an increase in lipid peroxidation. The effects tended to be more pronounced following the HFS than the fruit diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.