The ontogenesis of Na+-K+-ATPase activity and Na+-taurocholate cotransport was studied in basolateral plasma membrane vesicles from fetal and neonatal rat liver. Membrane vesicles from each age group were 30-fold enriched in the basolateral marker enzyme Na+-K+-ATPase, 4- to 7-fold enriched in the bile canalicular membrane marker enzymes alkaline phosphatase and Mg2+ ATPase, and not significantly enriched in activities of marker enzymes for intracellular organelles. Na+-K+-ATPase activity was significantly lower in basolateral membranes from late fetal (day 21-22) and neonatal (day 1) rat liver. Kinetic analysis of Na+-K+-ATPase activity at various concentrations of ATP revealed that the maximum velocity of enzyme reaction (Vmax) for Na+-K+-ATPase was 70 and 90% of adult activity in the fetus and the neonate, respectively. The ATP Km was significantly lower in the neonate than the adult, suggesting a higher affinity of the neonatal enzyme for ATP. In contrast to the early maturation of Na+-K+-ATPase, transport of taurocholate was markedly lower in both fetal and neonatal vesicles compared with the adult. Taurocholate uptake on day 19 of gestation did not differ in the presence of a Na+ or K+ gradient, and uphill transport, as indicated by an overshoot, did not occur. On day 20 taurocholate uptake was stimulated by a Na+ compared with a K+ gradient, and accumulation of isotope above equilibrium was demonstrated. Na+-dependent transport of taurocholate by late fetal (day 22) and neonatal vesicles was saturable but the Vmax at each age was significantly lower and the apparent Km higher in developing compared with adult membrane vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)
Highly purified rat basolateral liver plasma membrane vesicles were used to examine the mechanism and the driving forces for hepatic uptake of the beta-amino acid, taurine. An inwardly directed 100 mM NaCl gradient stimulated the initial rate of taurine uptake and energized a transient twofold accumulation of taurine above equilibrium ("overshoot"). In contrast, uptake was slower and no overshoot was detected in the presence of a KCl gradient. A negative intravesicular electrical potential generated by the presence of permeant anions or an outwardly directed K+ gradient with valinomycin increased Na+-stimulated taurine uptake. External Cl- stimulated Na+-dependent taurine uptake independent of effects on the transmembrane electrical potential difference. Na+-dependent taurine uptake showed a sigmoidal dependence on extravesicular Na+ concentration, suggesting multiple Na+ ions are involved in the translocation of each taurine molecule. Na+-dependent taurine uptake demonstrated Michaelis-Menten kinetics with a maximum velocity of 0.537 nmol.mg protein-1.min-1 and an apparent Km of 174 microM. [3H]taurine uptake was inhibited by the presence of excess unlabeled taurine, beta-alanine, or hypotaurine but not by L-glutamine or L-alanine. In summary, using basolateral liver plasma membrane vesicles, we have shown that hepatic uptake of taurine occurs by a carrier-mediated, secondary active transport process specific for beta-amino acids. Uptake is electrogenic, stimulated by external Cl-, and requires multiple Na+ ions for the translocation of each taurine molecule.
Taurine, a sulfur-containing beta-amino acid, may be conditionally essential during development. However, the existence of a carrier system for beta-amino acids has not been demonstrated in brush-border membrane vesicles (BBMV) from adult rat jejunum. We studied the uptake of [3H]taurine in BBMV prepared from the jejunum of developing and adult rats using a cation-precipitation technique. Uptake of 10 microM [3H]taurine by adult BBMV was slightly enhanced in the presence of an inwardly directed 100 mM Na+ gradient compared with a K+ gradient, and there was no intravesicular accumulation of isotope above the equilibrium concentration ("overshoot"). In contrast, taurine transport by BBMV from 10-day-old rat pups was markedly accelerated in the presence of a Na+ gradient compared with a K+ gradient and a twofold overshoot was observed. Na+-dependent taurine uptake was inhibited by the structural analogues hypotaurine and beta-alanine but not by alpha-alanine or glutamine, which are amino acids served by other transport systems. By computer analysis, Na+-dependent taurine uptake (2-1,000 microM) was saturable with an apparent Km of 74.80 +/- 11.87 microM and a Vmax of 53.55 +/- 2.76 pmol.mg protein-1.min-1. With increasing postnatal age, there was a marked decrease in the initial rate and peak intravesicular accumulation of taurine with disappearance of the overshoot by 21 days of age. We conclude 1) a Na+-dependent carrier mechanism for taurine transport is present in the brush-border membrane of suckling rat jejunum and 2) the activity of this carrier decreases after weaning.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.