Taurine, a sulfur-containing beta-amino acid, may be conditionally essential during development. However, the existence of a carrier system for beta-amino acids has not been demonstrated in brush-border membrane vesicles (BBMV) from adult rat jejunum. We studied the uptake of [3H]taurine in BBMV prepared from the jejunum of developing and adult rats using a cation-precipitation technique. Uptake of 10 microM [3H]taurine by adult BBMV was slightly enhanced in the presence of an inwardly directed 100 mM Na+ gradient compared with a K+ gradient, and there was no intravesicular accumulation of isotope above the equilibrium concentration ("overshoot"). In contrast, taurine transport by BBMV from 10-day-old rat pups was markedly accelerated in the presence of a Na+ gradient compared with a K+ gradient and a twofold overshoot was observed. Na+-dependent taurine uptake was inhibited by the structural analogues hypotaurine and beta-alanine but not by alpha-alanine or glutamine, which are amino acids served by other transport systems. By computer analysis, Na+-dependent taurine uptake (2-1,000 microM) was saturable with an apparent Km of 74.80 +/- 11.87 microM and a Vmax of 53.55 +/- 2.76 pmol.mg protein-1.min-1. With increasing postnatal age, there was a marked decrease in the initial rate and peak intravesicular accumulation of taurine with disappearance of the overshoot by 21 days of age. We conclude 1) a Na+-dependent carrier mechanism for taurine transport is present in the brush-border membrane of suckling rat jejunum and 2) the activity of this carrier decreases after weaning.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.