Amid growing urgency behind the need to curb global greenhouse gas emissions, the COVID-19 pandemic has thrown the world into another crisis. Prominent conceptualizations of transformation suggest that crises like the pandemic may create windows of opportunity for transformative change, such as the scope and scale of systemic change required to address the climate crisis. Additionally, envisioning positive futures plays an important role in building shared commitment and inspiration for transformation, particularly if conducted in transformative spaces where actors with diverse framings and vulnerabilities can experiment with new practices and ideas. Emerging research demonstrates the potential for experimental futures methods to create such transformative spaces. In this study, we aimed to create a transformative space that builds inspiration and shared commitment for climate action while exploring the unique inflection point created by the COVID-19 pandemic. To do so, we constructed a highly creative participatory futuring process for participants involved in climate action in the Kitchener-Waterloo Region (Canada) to imagine desirable futures emerging from the crisis. Because we needed to move quickly and accommodate pandemic-related constraints to explore this unique moment in time, we also aimed to reflect on considerations for an agile futures practice in service of transformative change. Through a virtual workshop and surveys, participants envisioned future worlds in which local "seeds" of positive climate futures emerging during COVID-19 become mainstream. They also wrote science fiction stories of characters navigating those worlds. Observing artists depicted the futures through visual art. Reflections on our experience facilitating the process generated five considerations for a more agile futures practice in service of transformative change: adapt the ideal process to context-specific opportunities and constraints, align with strategic partners while ensuring everyone is in the room, underpin the process with values, treat everyone's contributions as knowledge, and contextualize the role of inspiration as an outcome.
Climate change is increasing the frequency and the severity of extreme events in river basins around the world. Efforts to build resilience to these impacts are complicated by the social–ecological interactions, cross-scale feedbacks, and diverse actor interests that influence the dynamics of change in social–ecological systems (SESs). In this study, we aimed to explore big-picture scenarios of a river basin under climate change by characterizing future change as emergent from interactions between diverse efforts to build resilience and a complex, cross-scale SES. To do so, we facilitated a transdisciplinary scenario modeling process structured by the cross-impact balances (CIB) method, a semi-quantitative method that applies systems theory to generate internally consistent narrative scenarios from a network of interacting drivers of change. Thus, we also aimed to explore the potential for the CIB method to surface diverse perspectives and drivers of change in SESs. We situated this process in the Red River Basin, a transboundary basin shared by the United States and Canada where significant natural climatic variability is worsened by climate change. The process generated 15 interacting drivers ranging from agricultural markets to ecological integrity, generating eight consistent scenarios that are robust to model uncertainty. The scenario analysis and the debrief workshop reveal important insights, including the transformative changes required to achieve desirable outcomes and the cornerstone role of Indigenous water rights. In sum, our analysis surfaced significant complexities surrounding efforts to build resilience and affirmed the potential for the CIB method to generate unique insights about the trajectory of SESs.
Abstract:International capital markets are responding to the global challenge of climate change, including through the use of labeled green and climate bonds earmarked for infrastructure projects associated with de-carbonization and to a lesser extent, projects that increase resilience to the impacts of climate change. The potential to apply emerging climate bond certification standards to agricultural water management projects in major food production regions is examined with respect to a specific example of multi-functional distributed water harvesting on the Canadian Prairies, where climate impacts are projected to be high. The diverse range of co-benefits is examined using an ecosystem service lens, and they contribute to the overall value proposition of the infrastructure bond. Certification of a distributed water harvesting infrastructure bond under the Climate Bond Standard water criteria is feasible given climate bond issue precedents. The use of ecosystem service co-benefits as additional investment criteria are recommended as relevant bond certification standards continue to evolve.
Resource Recovery and Reuse (RRR) is a subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE) dedicated to applied research on the safe recovery of water, nutrients and energy from domestic and agro-industrial waste streams. This subprogram aims to create impact through different lines of action research, including (i) developing and testing scalable RRR business models, (ii) assessing and mitigating risks from RRR for public health and the environment, (iii) supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste, and (iv) improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment. This subprogram works closely with the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), United Nations University (UNU), and many national and international partners across the globe. The RRR series of documents present summaries and reviews of the subprogram's research and resulting application guidelines, targeting development experts and others in the research The authors Anita Lazurko holds a BSc in Civil Engineering from the
Resource Recovery and Reuse (RRR) is a subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE) dedicated to applied research on the safe recovery of water, nutrients and energy from domestic and agro-industrial waste streams. This subprogram aims to create impact through different lines of action research, including (i) developing and testing scalable RRR business models, (ii) assessing and mitigating risks from RRR for public health and the environment, (iii) supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste, and (iv) improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment. This subprogram works closely with the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), United Nations University (UNU), and many national and international partners across the globe. The RRR series of documents present summaries and reviews of the subprogram's research and resulting application guidelines, targeting development experts and others in the research The author Anita Lazurko holds a BSc in Civil Engineering from the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.