In general, gamma interferon (IFN-␥)-producing CD4؉ Th1 cells are important for the immunological control of intracellular pathogens. We previously demonstrated an association between parasite-specific induction of IFN-␥ responses and resistance to the intracellular protozoan Trypanosoma cruzi. To investigate a potential causal relationship between Th1 responses and T. cruzi resistance, we studied the ability of Th1 cells to protect susceptible BALB/c mice against virulent parasite challenges. We developed immunization protocols capable of inducing polarized Th1 and Th2 responses in vivo. Induction of parasite-specific Th1 responses, but not Th2 responses, protected BALB/c mice against virulent T. cruzi challenges. We generated T. cruzi-specific CD4 ؉ Th1 and Th2 cell lines from BALB/c mice that were activated by infected macrophages to produce their corresponding cytokine response profiles. Th1 cells, but not Th2 cells, induced nitric oxide production and inhibited intracellular parasite replication in T. cruzi-infected macrophages. Despite the ability to inhibit parasite replication in vitro, Th1 cells alone could not adoptively transfer protection against T. cruzi to SCID mice. In addition, despite the fact that the adoptive transfer of CD4 ؉ T lymphocytes was shown to be necessary for the development of immunity protective against primary T. cruzi infection in our SCID mouse model, protective secondary effector functions could be transferred to SCID mice from memory-immune BALB/c mice in the absence of CD4 ؉ T lymphocytes. These results indicate that, although CD4 ؉ Th1 cells can directly inhibit intracellular parasite replication, a more important role for these cells in T. cruzi systemic immunity may be to provide helper activity for the development of other effector functions protective in vivo.
Cruzipain, the major cysteinyl proteinase of Trypanosoma cruzi, is expressed by all developmental forms and strains of the parasite and stimulates potent humoral and cellular immune responses during infection in both humans and mice. This information suggested that cruzipain could be used to develop an effective T. cruzi vaccine. To study whether cruzipain-specific T cells could inhibit T. cruzi intracellular replication, we generated cruzipain-reactive CD4 ؉ Th1 cell lines. These T cells produced large amounts of gamma interferon when cocultured with infected macrophages, resulting in NO production and decreased intracellular parasite replication. To study the protective effects in vivo of cruzipain-specific Th1 responses against systemic T. cruzi challenges, we immunized mice with recombinant cruzipain plus interleukin 12 (IL-12) and a neutralizing anti-IL-4 MAb. These immunized mice developed potent cruzipain-specific memory Th1 cell responses and were significantly protected against normally lethal systemic T. cruzi challenges. Although cruzipain-specific Th1 responses were associated with T. cruzi protective immunity in vitro and in vivo, adoptive transfer of cruzipain-specific Th1 cells alone did not protect BALB/c histocompatible mice, indicating that additional immune mechanisms are important for cruzipain-specific immunity. To study whether cruzipain could induce mucosal immune responses relevant for vaccine development, we prepared recombinant attenuated Salmonella enterica serovar Typhimurium vaccines expressing cruzipain. BALB/c mice immunized with salmonella expressing cruzipain were significantly protected against T. cruzi mucosal infection. Overall, these data indicate that cruzipain is an important T. cruzi vaccine candidate and that protective T. cruzi vaccines will need to induce more than CD4 ؉ Th1 cells alone.
Interleukin-12 is a potent activator and initiator of type-1 T cell development, and can be used as an adjuvant to bias for the development of vaccine-induced Th1 immune responses. During vaccination of MHC class I deficient beta-2 microglobulin knockout mice (β2M−/−) with an IL-12/αIL-4 Th1 biasing procedure, all of the mice died. None of the IL-12/αIL-4 treated wild type mice developed any noticeable complications. We hypothesized that NK cells may be activated by IL-12 treatment in these β2M−/− mice, leading to necrosis and eventual death. IL-12/αIL-4 treatment of β2M−/− mice resulted in increased NK cell numbers and activation status (IFN-γ+, CD69+). Finally, in vivo depletion of NK cells reversed the pathology induced by IL-12/αIL-4 treatment in β2M deficient mice. These results indicate that IL-12 combined with αIL-4 irreversibly activates NK cells leading to a disseminated inflammatory pathology and death in β2M−/− mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.