The parasitic protozoan Trypanosoma cruzi employs multiple molecular strategies to invade a broad range of nonphagocytic cells. Here we demonstrate that the invasion of human primary umbilical vein endothelial cells (HUVECs) or Chinese hamster ovary (CHO) cells overexpressing the B2 type of bradykinin receptor (CHO-B2R) by tissue culture trypomastigotes is subtly modulated by the combined activities of kininogens, kininogenases, and kinin-degrading peptidases. The presence of captopril, an inhibitor of bradykinin degradation by kininase II, drastically potentiated parasitic invasion of HUVECs and CHO-B2R, but not of mock-transfected CHO cells, whereas the B2R antagonist HOE 140 or monoclonal antibody MBK3 to bradykinin blocked these effects. Invasion competence correlated with the parasites' ability to liberate the short-lived kinins from cell-bound kininogen and to elicit vigorous intracellular free calcium ([Ca2+]i) transients through B2R. Invasion was impaired by membrane-permeable cysteine proteinase inhibitors such as Z-(SBz)Cys-Phe-CHN2 but not by the hydrophilic inhibitor 1-trans-epoxysuccinyl-l-leucyl-amido-(4-guanidino) butane or cystatin C, suggesting that kinin release is confined to secluded spaces formed by juxtaposition of host cell and parasite plasma membranes. Analysis of trypomastigote transfectants expressing various cysteine proteinase isoforms showed that invasion competence is linked to the kinin releasing activity of cruzipain, herein proposed as a factor of virulence in Chagas' disease.
We have previously reported that exogenous bradykinin activates immature dendritic cells (DCs) via the bradykinin B(2) receptor (B(2)R), thereby stimulating adaptive immunity. In this study, we show that these premises are met in a model of s.c. infection by Trypanosoma cruzi, a protozoan that liberates kinins from kininogens through its major protease, cruzipain. Intensity of B(2)R-dependent paw edema evoked by trypomastigotes correlated with levels of IL-12 produced by CD11c(+) dendritic cells isolated from draining lymph nodes. The IL-12 response induced by endogenously released kinins was vigorously increased in infected mice pretreated with inhibitors of angiotensin converting enzyme (ACE), a kinin-degrading metallopeptidase. Furthermore, these innate stimulatory effects were linked to B(2)R-dependent up-regulation of IFN-gamma production by Ag-specific T cells. Strikingly, the trypomastigotes failed to up-regulate type 1 immunity in TLR2(-/-) mice, irrespective of ACE inhibitor treatment. Analysis of the dynamics of inflammation revealed that TLR2 triggering by glycosylphosphatidylinositol-anchored mucins induces plasma extravasation, thereby favoring peripheral accumulation of kininogens in sites of infection. Further downstream, the parasites generate high levels of innate kinin signals in peripheral tissues through the activity of cruzipain. The demonstration that the deficient type 1 immune responses of TLR2(-/-) mice are rescued upon s.c. injection of exogenous kininogens, along with trypomastigotes, supports the notion that generation of kinin "danger" signals is intensified through cooperative activation of TLR2 and B(2)R. In summary, we have described a s.c. infection model where type 1 immunity is vigorously up-regulated by bradykinin, an innate signal whose levels in peripheral tissues are controlled by an intricate interplay of TLR2, B(2)R, and ACE.
Human C4 and mouse Ss proteins show extensive structural homologies. They are antigenically related (1) and are composed of three polypeptide chains of similar molecular weights, linked by disulfide bonds (2, 3). In addition, it is very likely that the major histocompatibility complex of these species contains structural genes for beth proteins (3-5). However, some functional differences between the Ss protein and the C4 hemolytic activity of mouse serum have been reported (6).We recently described a new protein in mouse serum which forms complexes with the Ss protein, and also with C4 of human or guinea pig origin (7, 8). Because of the remarkable specificity of its interaction with Ss (C4) we named this protein Ss-or C4-binding protein, and suggested it ~might be a new complement component. This question could not be appropriately studied in mouse serum, whose complement system is still poorly characterized. Therefore we approached the problem by searching for a C4-binding protein (C4-bp)' analogue in human serum.In this paper we report the isolation and characterization of a human serum protein that differs from all known complement components, which has properties very similar to those of mouse C4-bp. Materials and MethodsMaterials. Dimethyl suberimidate, Aldrich Chemical Co., Inc., Milwaukee, Wis.; agarose and human transferrin, Behring Diagnostics, American Hoechst Corp., Sommerville, N. J.; Biorex 70, N, acrylamide, N,N,N',, ammonium persulfate, sodium dodecyl sulfate (SDS), Bio-Rad Laboratories, Richmond, Calif.; diisopropylfluorophosphate (DFP), Calbiochem, San Diego, Calif.; sucrose, Fisher Scientific Co.,
Trypanosoma cruzi, the protozoan that causes Chagas' heart disease, invades endothelial cells in vitro by activating the B2 kinin receptor (B2R). Here, we demonstrate that mice infected with trypomastigotes develop potent edema after treatment with the angiotensin-converting enzyme (ACE) (or kininase II) inhibitor captopril. Experiments performed with specific kinin receptor (B2R/B1R) antagonists and knockout mice revealed that the early-phase (3-h) edema is mediated by the constitutive B2R, whereas the late-phase (24-h) response depends on stimulation of the up-regulated B1R. Given previous evidence that parasite invasion of cells expressing B2R is potentiated by captopril, we investigated the prerequisites for in vitro infection of Chinese hamster ovary cells overexpressing either B1R or B2R, human umbilical vein endothelial cells activated by lipopolysaccharide, and neonatal rat cardiomyocytes. Our results indicate that captopril potentiates parasite invasion regardless of the kinin (B2/B1) activation pathways, whereas DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid (MGTA), an inhibitor of kininase I (carboxypeptidase M/N), selectively decreases parasite infectivity for B1R-expressing cells. These data suggest that formation of the B1R agonist, i.e., [des-Arg] kinins, critically depends on the processing action of kininase I, here proposed as a potential pathogenesis cofactor. Collectively, our data suggest that fluctuations in the levels of kininases may modulate parasite infectivity and pathological outcome in Chagas' disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.