B.1.617 is becoming a dominant Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) lineage worldwide with many sublineages, of which B.1.617.2 is designated as a variant of concern. The pathogenicity of B.1.617.2 (Delta) and B.1.617.3 lineage of SARS-CoV-2 was evaluated and compared with that of B.1, an early virus isolate with D614G mutation in a Syrian hamster model. Viral load, antibody response, and lung disease were studied. There was no significant difference in the virus shedding pattern among these variants. High levels of SARS-CoV-2 sub genomic RNA were detected in the respiratory tract of hamsters infected with the Delta variant for 14 days, which warrants further transmission studies. The Delta variant induced lung disease of moderate severity in about 40% of infected animals, which supports the attributed disease severity of the variant. Cross neutralizing antibodies were detected in animals infected with B.1, Delta, and B.1.617.3 variant, but neutralizing capacity was significantly lower with B.1.351 (Beta variant).
We have developed a monoclonal antibody (mAb) cocktail (ZRC-3308) comprising of ZRC3308-A7 and ZRC3308-B10 in the ratio 1:1 for COVID-19 treatment. The mAbs were designed to have reduced immune effector functions and increased circulation half-life. mAbs showed good binding affinities to non-competing epitopes on RBD of SARS-CoV-2 spike protein and were found neutralizing SARS-CoV-2 variants B.1, B.1.1.7, B.1.351, B.1.617.2, and B.1.617.2 AY.1 in vitro. The mAb cocktail demonstrated effective prophylactic and therapeutic activity against SARS-CoV-2 infection in Syrian hamsters. The antibody cocktail appears to be a promising candidate for prophylactic use and for therapy in early COVID-19 cases that have not progressed to severe disease.
This protocol describes an indirect enzyme-linked immunosorbent assay (ELISA) for qualitative detection of IgG antibodies against Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Syrian hamster serum samples. We describe the preparation of inactivated virus antigen and the negative control antigen, and the use of antigen-coated microtiter plates to detect SARS-CoV-2 specific antibodies from SARS-CoV-2-infected hamsters, including the criteria for differentiating positive vs negative reaction. The limited batch-to-batch variability of this assay has been verified with two batches of independently-prepared antigens.
B.1.617 lineage is becoming a dominant SARS-CoV-2 lineage worldwide and was the dominant lineage reported in second COVID-19 wave in India, which necessitated studying the properties of the variant. We evaluated the pathogenicity and virus shedding of B.1.617.2 (Delta) and B.1.617.3 lineage of SARS-CoV-2 and compared with that of B.1, an early virus isolate with D614G mutation in Syrian hamster model. Viral load, antibody response and lung disease were studied. No significant difference in the virus shedding pattern was observed among these variants studied. A significantly high SARS-CoV-2 sub genomic RNA could be detected in the respiratory tract of hamsters infected with Delta variant for 14 days. Delta variant induced lung disease of moderate severity in 40% of infected animals. The neutralizing capability of the B.1, Delta and B.1.617.3 variant infected animals were found significantly lower with the B.1.351 (Beta variant). The findings of the study support the attributed disease severity and the increased transmission potential of the Delta variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.